辽宁省锦州市第七中学2023年八年级数学第二学期期末监测试题含解析_第1页
辽宁省锦州市第七中学2023年八年级数学第二学期期末监测试题含解析_第2页
辽宁省锦州市第七中学2023年八年级数学第二学期期末监测试题含解析_第3页
辽宁省锦州市第七中学2023年八年级数学第二学期期末监测试题含解析_第4页
辽宁省锦州市第七中学2023年八年级数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是()A.4和7 B.5和7 C.5和8 D.4和172.用换元法解方程时,如果设=y,则原方程可化为()A.y+= B.2y2﹣5y+2=0 C.6y2+5y+2=0 D.3y+=3.下列命题中,假命题的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线互相垂直平分的四边形是菱形D.对角线相等且互相垂直的四边形是正方形4.已知,则的值为()A.2x5 B.—2 C.52x D.25.若一个正多边形的一个内角是135°,则这个正多边形的边数是()A.10 B.9 C.8 D.66.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车 B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米 D.到达学校时骑行时间为20分钟7.如图,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,···,这样依次作图,则点的纵坐标为()A. B. C. D.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.下列运算中正确的是()A.+= B.C. D.10.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家二、填空题(每小题3分,共24分)11.当时,二次根式的值是_________.12.已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.13.已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.14.如图,x轴正半轴上,顶点D在y轴正半轴上,反比例函数y=(x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;15.已知,若是二元一次方程的一个解,则代数式的值是____16.已知关于x的方程=1的解是负值,则a的取值范围是______.17.如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为.18.如图,D为△ABC的AC边上的一点,∠A=∠DBC=36°,∠C=72°,则图中共有等腰三角形____个.三、解答题(共66分)19.(10分)阅读下列材料,并解爷其后的问题:我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且(1)在图1中,若的面积为15,则的面积为___________;(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.20.(6分)如图,在矩形中,点为上一点,连接、,.(1)如图1,若,,求的长.(2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.21.(6分)如图,在中,,是上的中线,的垂直平分线交于点,连接并延长交于点,,垂足为.(1)求证:;(2)若,,求的长;(3)如图,在中,,,是上的一点,且,若,请你直接写出的长.22.(8分)为增强学生的身体素质,某校长年坚持全员体育锻炼,并定期进行体能测试,下图是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,画出的频数分布直方图的一部分,已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数9.(1)请将频数分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?23.(8分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.(1)求E点坐标;(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.24.(8分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:ΔABD≅ΔBEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.25.(10分)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是______.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.26.(10分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.

参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:如图:因为平行四边形的对角线互相平分,所,,在中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.详解:A、∵,∴不可能;B、∵,∴不可能;C、∵,∴可能;D、,∴不可能;故选C..点睛:本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.2、D【解析】

因为已知设=y,易得=,即可转化为关于y的方程.【详解】设=y,则则原方程变形为:3y+=,故选:D.【点睛】本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.3、D【解析】

根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.【详解】A、矩形的对角线相等,是真命题;B、平行四边形的对角线互相平分,是真命题;C、对角线互相垂直平分的四边形是菱形,是真命题;D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;故选:D.【点睛】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.4、C【解析】

结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.5、C【解析】

根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数==1,∴这个正多边形的边数是1.故选:C.【点睛】本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.6、D【解析】

观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.7、B【解析】

根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.8、C【解析】

连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.9、D【解析】

根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.+=2+3=5,故A选项错误;B.=2,故B选项错误;C.,故C选项错误;D.,正确,故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.10、D【解析】

利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.

故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.二、填空题(每小题3分,共24分)11、3【解析】

根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.12、或【解析】

分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.【详解】分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CE,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CE,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE-CF=4-3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CF,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CF,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=1;综上所述:线段EF的长为:1或1.故答案为:1或1.【点睛】本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.13、-1.【解析】

先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab2+a2b=ab(a+b),而a+b=5,ab=-6,∴ab2+a2b=-6×5=-1.故答案为:-1.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.14、(3,2)【解析】

把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;【详解】∵点A是反比例函数y=(x>0)的图象与正比例函数y=x的图象的交点,∴,解得(舍去)或∴A(3,2);故答案为:(3,2)【点睛】此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组15、【解析】

把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.【详解】解:把代入方程,得到,∵∴原式=,故答案为:.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.16、a<-2且a≠-4【解析】

表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a<-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.17、-6【解析】

由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;【详解】解:∵S△PAO=3,∴=3,∴|k|=6,∵图象经过第二象限,∴k<0,∴k=−6;故答案为:−6.【点睛】本题主要考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握反比例函数系数k的几何意义,反比例函数图象上点的坐标特征是解题的关键.18、1【解析】

由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.【详解】解:∵∠C=72゜,∠A=∠DBC=16゜,

∴∠BDC=180°-∠DBC-∠C=72°=∠C,

∴BC=BD,即△BCD是等腰三角形;

∴∠ABD=∠BDC-∠A=16°=∠A,

∴AD=BD,即△ABD是等腰三角形;

∴∠ABC=∠ABD+∠DBC=72°=∠C,

∴AB=AC,即△ABC是等腰三角形.

故答案为:1.【点睛】此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.三、解答题(共66分)19、(1);(2)见解析;(3)1.【解析】

(1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;

(2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;

(3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD=,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.【详解】(1)解:∵D、E、F分别是△ABC三边的中点,

则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,

∴△DEF的面积=△ABC的面积=;

故答案为;

(2)证明:连接BD,如图2所示:

∵E、F、G、H分别是AB、BC、CD、AD的中点,

∴EH是△ABD的中位线,FG是△BCD的中位线,

∴EH∥BD,EH=BD,FG∥BD,FG=BD,

∴EH∥FG,EH=FG,

∴四边形EFGH是平行四边形;

(3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,

∴EH是△ABD的中位线,FG是△BCD的中位线,

∴EH∥BD,EH=BD=,FG∥BD,FG=BD,

∴EH∥FG,EH=FG,

∴四边形EFGH是平行四边形,

同理:EF∥AC,EF=AC=2,

∵AC⊥BD,

∴EH⊥EF,

∴四边形EFGH是矩形,

∴四边形EFGH的面积=EH×EF=×2=1.故答案为(1);(2)见解析;(3)1.【点睛】本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.20、(1);(2)见解析【解析】

(1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;(2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.【详解】解:(1)∵矩形,∴又∵∴设,在中,即解得:,(舍)∴∵矩形∴,∴在中,,∴;(2)如答图,延长交的延长线于∵,∴又∵为的中点,∴在和中∴∴,∵,∴∴∴∴【点睛】本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.21、(1)证明见解析(2)(3)【解析】

(1)根据题意利用中线的性质和垂直平分线的性质,即可解答.(2)根据题意和由(1)得到,再利用勾股定理得到,最后利用全等三角形的性质,即可解答.(3)作于,于,可得,设,则,利用勾股定理即可解答.【详解】(1)证明:∵,AD是上的中线,∴.又∵,∴.∵是的垂直平分线,∴.∴.又∵,∴.(2)解:∵,是上的中线,,∴.由(1)知,,∴.∵,∴.∴.由,及勾股定理,可得,∵,∴.所以,.(3).解:如图,作于,于,仿(1)可得,且∴设,则,在中,,得,(负值已舍).∴.【点睛】此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线.22、(1)见解析;(2)60人;(3).【解析】

(1)第5小组的频率应该是1-0.05-0.1-0.30-0.35=0.1,所以在直方图上画上第五组即可.(2)第5组的人数为9人,频率为0.1,总人数=频数÷频率,从而可得解.(3)合格的频率加起来即可.【详解】(1)1-0.05-0.1-0.30-0.35=0.1.补图如下:(2)=60(人).该班参加这次测试的学生有60人.(3)0.30+0.35+0.1=0.8=80%.该班成绩的合格率是80%.【点睛】本题考查画直方图,以及熟记频率,频数的概念以及它们之间的关系,从而可得解.23、(1)点E的坐标为(1,2);(2)点P的坐标为(-1,6)或(5,-6).【解析】

(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.【详解】(1)由题意得,,解得,,∴点E的坐标为(1,2);(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,∴A(-1,0),D(2,0),∴AD=3,∵△ADP的面积为9,∴△ADP边AD上的高为6,∴点P的纵坐标为6,当点P在y轴的上方时,-2x+4=6,解得x=-1,∴P(-1,6);当点P在y轴的下方时,-2x+4=-6,解得x=5,∴P(5,-6);综上,当△ADP的面积为9时,点P的坐标为(-1,6)或(5,-6).【点睛】本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.24、(1)证明见解析;(2)证明见解析.【解析】

(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD=BC   ∴BE∕∕CD.又∵AB=BE,∴BE=DC.∴四边形BECD为平行四边形.∴BD=EC.∵在ΔABD 与ΔBEC中,AB=BE∴ΔABD (2)由(1)知,四边形BECD为平行四边形,则OD=OE   ∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A   ∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴四边形BECD是矩形.【点睛】本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.25、(1)相等;(2)①见解析,②结论成立,见解析;(3)-1或+1【解析】

(1)证△ADH≌△PQH得AD=PQ=CD,据此可得CQ=PD;(2)①根据题意补全图形即可;②连接HC,先证△ADH≌△CDH得∠1=∠2,再证△CQH≌△PDH得出答案;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论