




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若a>b,则下列式子中正确的是()A.-15a<-15b B.3-a>3-b C.2a2.若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.233.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以 B.甲可以,乙不可以C.甲不可以,乙可以 D.甲、乙都不可以4.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x的值为()A.1 B.4 C.2 D.-0.55.在下列各式中①;②;③;④,是一元二次方程的共有()A.0个 B.1个 C.2个 D.3个6.如果a>b,那么下列结论中,错误的是()A.a﹣3>b﹣3 B.3a>3b C. D.﹣a>﹣b7.下列二次根式,化简后能与合并的是()A. B. C. D.8.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象9.下列函数中,一定是一次函数的是A. B. C. D.10.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm11.如图,将一条宽为1的矩形纸条沿AC折叠,若,则BC的长是A.3 B.2 C.5 D.112.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)二、填空题(每题4分,共24分)13.将直线y=7x向下平移2个单位,所得直线的函数表达式是________.14.如果关于x的方程没有实数根,则k的取值范围为______.15.一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________16.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是_____.17.若分式有意义,则的取值范围是_______________.18.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(共78分)19.(8分)若变量z是变量y的函数,同时变量y是变量x的函数,那么我们把变量z叫做变量x的“迭代函数”.例如:z2y3,yx1,则z2x132x1,那么z2x1就是z与x之间的“迭代函数”解析式.(1)当2006x2020时,zy2,,请求出z与x之间的“迭代函数”的解析式及z的最小值;(2)若z2ya,yax24axba0,当1x3时,“迭代函数”z的取值范围为1z17,求a和b的值;(3)已知一次函数yax1经过点1,2,zay2b2ycb4(其中a、b、c均为常数),聪明的你们一定知道“迭代函数”z是x的二次函数,若x1、x2(x1x2)是“迭代函数”z3的两个根,点x3,2是“迭代函数”z的顶点,而且x1、x2、x3还是一个直角三角形的三条边长,请破解“迭代函数”z关于x的函数解析式.20.(8分)已知:,求得值.21.(8分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.22.(10分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少?23.(10分)我们都知道在中国象棋中,马走日,象走田,如图所示,假设一匹马经过A、B两点走到点C,请问点A、B在不在马的起始位置所在的点与点C所确定的直线上?请说明你的理由.24.(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.(1)求E点坐标;(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.25.(12分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.26.小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:眼镜片度数(度)…镜片焦距(厘米)…(1)求与的函数表达式;(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据不等式的性质即可判断.【详解】∵a>b,∴-1∴3-a<3-b,故B错误;∴2a>2b,故C错误;b-a<0,故D错误;故选A.【点睛】此题主要考查不等式,解题的关键是熟知不等式的性质.2、B【解析】
直接利用8<<9,进而得出a,b的值即可得出答案.【详解】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=1.故选:B.【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.3、A【解析】
直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【详解】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.4、B【解析】
根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【详解】根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故选B.【点睛】本题考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.5、B【解析】
根据一元二次方程的定义即可求解.【详解】由一元二次方程的定义可知①为一元二次方程,符合题意②不是方程,不符合题意③是分式方程,不符合题意④当a=0时,不是一元二次方程,不符合题意故选B.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.6、D【解析】分析:根据不等式的基本性质判断,不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.详解:A、不等式两边加(或减)同一个数(或式子),不等号的方向不变,a>b两边同时减3,不等号的方向不变,所以a-3>b-3正确;B、C、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b和正确;D、不等式两边乘(或除以)同一个负数,不等号的方向改变,a>b两边同乘以-1得到-a<-b,所以-a>-b错误;故选D.点睛:不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.7、C【解析】
分别化简二次根式,进而判断与是不是同类二次根式,即可判定.【详解】解:A、=,与不是同类二次根式,不能与合并,不合题意;
B、=,与不是同类二次根式,不能与合并,不符合题意;
C、=,与是同类二次根式,能与合并,符合题意;
D、=,与不是同类二次根式,不能与合并,不合题意.
故选:C.【点睛】此题主要考查了同类二次根式,正确化简二次根式是解题关键.8、B【解析】
根据中心对称和轴对称图形的定义判定即可.【详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【点睛】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.9、A【解析】
根据一次函数的定义,逐一分析四个选项,此题得解.【详解】解:、,是一次函数,符合题意;、自变量的次数为,不是一次函数,不符合题意;、自变量的次数为2,不是一次函数,不符合题意;、当时,函数为常数函数,不是一次函数,不符合题意.故选:.【点睛】本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.10、A【解析】
连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好经过圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.11、B【解析】
如图,作AH⊥BC于H,则AH=1,利用含30度的直角三角形三边的关系得到AB=1AH=1,再根据折叠的性质得∠MAC=∠BAC,根据平行线的性质得∠MAC=∠ACB,所以∠BAC=∠ACB,从而得到BC=BA=1.【详解】解:如图,作AH⊥BC于H,则AH=1,在Rt△ABH中,∵∠ABC=30°,∴AB=1AH=1,∵矩形纸条沿AC折叠,∴∠MAC=∠BAC,∵AM//CN,∴∠MAC=∠ACB,∴∠BAC=∠ACB,∴BC=BA=1,故选B.【点睛】本题考查了折叠的性质、含30度角的直角三角形的性质、矩形的性质等,熟练掌握折叠前后图形的形状和大小不变以及其他相关的性质是解题的关键.12、D【解析】
求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(每题4分,共24分)13、y=7x-2【解析】
根据一次函数平移口诀:上加下减,左加右减,计算即可.【详解】将直线y=7x向下平移2个单位,则y=7x-2.【点睛】本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.14、【解析】
根据判别式的意义得到△=(-3)2-4×(-2k)<0,然后解不等式即可.【详解】根据题意得△=(-3)2-4×(-2k)<0,解得.故答案为.【点睛】本题考查根的判别式和解不等式,解题的关键是掌握根的判别式和解不等式.15、9【解析】
根据中位数的定义,首先确定x的值,再计算方差.【详解】解:首先根据题意将所以数字从小到达排列,可得-3,-2,1,3,6因为这五个数的中位数为1再增加x后要使中位数为1,则因此可得x=1所以平均数为:所以方差为:故答案为9.【点睛】本题主要考查根据中位数求未知数和方差的计算,关键在于根据题意计算未知数.16、10+【解析】
根据三角形中位线定理得到,,,根据三角形的周长公式计算即可.【详解】解:∵△ABC的周长为,∴AB+AC+BC=,∵点D、E、F分别是BC、AB、AC的中点,∴,,,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,故答案为:10+.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17、【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.18、【解析】
如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.三、解答题(共78分)19、(1)z=-x+6;-1004;(2)或;(3)【解析】
(1)把代入zy2中化简即可得出答案;(2)把yax24axba0代入z2ya整理得z=2a(x-2)2-7a+2b,再分两种情况讨论,分别得方程组和,求解即可得;(3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再将y=x+1代入z=ay2+(b-2)y+c-b+4得,根据点x3,2是“迭代函数”z的顶点得出,再根据当z=3时,解得,又x1、x2、x3是一个直角三角形的三条边长得,代入解得b=-8,c=15,从而得解。【详解】解:(1)把代入zy2中得:z()2=-x+6∵-<0,∴z随着x的增大而减小,∵2006x2020,∴当x=2020时,z有最小值,最小值为z=-×2020+6=-1004故答案为:z=-x+6;-1004(2)把yax24axba0代入z2ya,得z2(ax24axb)a=2ax28axba,=2a(x-2)2-7a+2b这是一个二次函数,图象的对称轴是直线x=2,当a>0时,由函数图象的性质可得x=-1时,z=17;x=3时,z=-1;∴解得当a<0时,由函数图象的性质可得x=-1时,z=-1;x=3时,z=17;∴解得综上,或(3)把(1,2)代入y=ax+1得a+1=2解得a=1∴y=x+1把y=x+1代入z=ay2+(b-2)y+c-b+4并整理得∵点x3,2是“迭代函数”z的顶点,整理得当z=3时,解得又∵x1x2∴x1x3x2又∵x1、x2、x3还是一个直角三角形的三条边长∴即解得∴把代入解得c=15∴故答案为:【点睛】本题考查了二次函数和“迭代函数”,理解“迭代函数”的概念和函数的性质是解题的关键。20、2015【解析】
先根据完全平方公式将多项式变形,再将a的值代入计算即可.【详解】原式=,∵,∴原式.【点睛】此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便.21、证明步骤见解析【解析】
(1)根据平行四边形的性质再结合已知得到△AEF≌△DEC,即可解题,(2)先证明四边形ACDF是平行四边形,再证明△BCF是等边三角形,即可解题.【详解】解(1)在平行四边形中,AB∥CD,∴∠FAD=∠CDA,AB=CD∵点为的中点∴AE=DE,∠AEF=∠DEC,∴△AEF≌△DEC∴AF=CD,∴AB=AF,即为的中点(2)由(1)知AF=2AB,AF平行且等于CD∴四边形是平行四边形,又∵,∴AF=AD,∴△BCF是等边三角形,∴FC=AD,∴平行四边形是矩形【点睛】本题考查了平行四边形的性质,矩形的判定,等边三角形的判定,属于简单题,熟悉各种图形的判定定理是解题关键.22、(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=﹣20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元【解析】
(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元”,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据总价=单价×购进数量,即可得出w关于x的函数关系式;②利用一次函数的性质解决最值问题.【详解】解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据题意得:解得:.答:每个A型垃圾箱100元,每个B型垃圾箱120元.(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据题意得:w=100x+120(30﹣x)=-20x+3600(0≤x≤16且x为整数).②∵w=-20x+3600中k=-20<0,∴w随x值增大而减小,∴当x=16时,w取最小值,最小值=-20×16+3600=1.答:买16个A型垃圾箱总费用最少,最少费用是1元.故答案为(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=-20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元.【点睛】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量间的关系,找出w关于x的函数关系式;②利用一次函数的性质,解决最值问题.23、在,理由见解析.【解析】
以B为原点,建立直角坐标系,求出直线BC的解析式,再讲A点坐标代入解析式就可以得出结论.【详解】点A、B、C在一条直线上.如图,以B为原点,建立直角坐标系,A(-1,-1),C(1,1).设直线BC的解析式为:y=kx,由题意,得1=k,∴y=1x.∵x=-1时,∴y=-1.∴A(-1,-1)在直线BC上,∴点A、B、C在一条直线上.【点睛】本题考查了平面直角坐标系的运用,待定系数法求一次函数的解析式的运用,由自变量的值确定函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62906-6-1:2025 EN Laser displays - Part 6-1: Visualization method of colour gamut intersection
- 2025至2030中国电热毯行业发展研究与产业战略规划分析评估报告
- 2025至2030中国电子肺活量计行业产业运行态势及投资规划深度研究报告
- 2025年《护理交接班制度》考试试题(附答案)
- 教育领域下的电力革新-以AI辅助教学设备为例
- 教育心理学与德育在思政课程中的融合
- 教育信息化助力智慧课堂变革发展
- 智能教育新篇章绿色办公从这里开始
- 教育技术助力特殊教育的全球化发展
- 商业教育中的心理学如何设计高效课程
- 企业消防安全责任制模板
- 2025届黑龙江省哈尔滨四十七中学七年级英语第二学期期末统考试题含答案
- 人工智能通识课程开课方案
- 2025-2030中国智慧政务行业发展策略及投资潜力预测报告
- 【中考真题】2025年福建中考数学真题试卷(含解析)
- 人教版七年级下册英语完形填空专项训练13篇
- 绣花生产工艺流程
- 华为5G网络建设指导及站点硬件安装手册2020v2-1-54
- 第2章工业控制网络技术基础
- 海姆立克急救法PPT
- YS/T 534.3-2007氢氧化铝化学分析方法第3部分:二氧化硅含量的测定钼蓝光度法
评论
0/150
提交评论