荆州市重点中学2023年数学八年级第二学期期末复习检测模拟试题含解析_第1页
荆州市重点中学2023年数学八年级第二学期期末复习检测模拟试题含解析_第2页
荆州市重点中学2023年数学八年级第二学期期末复习检测模拟试题含解析_第3页
荆州市重点中学2023年数学八年级第二学期期末复习检测模拟试题含解析_第4页
荆州市重点中学2023年数学八年级第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.反比例函数y=的图象如图所示,点M是该函数图象上的一点,MN垂直于x轴,垂足为N,若S△MON=,则k的值为()A. B. C.3 D.-32.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4C.m=6,n=4 D.m=6,n=-43.如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于A.2 B. C.3 D.4.下列计算正确的是()A. B.C. D.5.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A.22 B.20C.22或20 D.186.如图,在▱ABCD中,已知,,AE平分交BC于点E,则CE长是A.8cm B.5cm C.9cm D.4cm7.如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.268.下列事件中,确定事件是()A.向量与向量是平行向量 B.方程有实数根;C.直线与直线相交 D.一组对边平行,另一组对边相等的四边形是等腰梯形9.在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四10.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.二、填空题(每小题3分,共24分)11.若二次函数y=ax2+bx的图象开口向下,则a可以为_________(写出一个即可).12.如图,在平行四边形中,,的平分线交于点,连接,若,则平行四边形的面积为__________.13.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).14.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)15.超速行驶是交通事故频发的主要原因之一.交警部门统计某天7:00—9:00经过高速公路某测速点的汽车的速度,得到频数分布折线图.若该路段汽车限速为110km/h,则超速行驶的汽车有_________辆.16.如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.17.已知是整数,则正整数n的最小值为___18.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.三、解答题(共66分)19.(10分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.20.(6分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.21.(6分)如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.22.(8分)解方程:.23.(8分)如图,边长为的正方形中,对角线相交于点,点是中点,交于点,于点,交于点.(1)求证:≌;(2)求线段的长.24.(8分)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(−1,2)和点B(1)求k的值及一次函数解析式;(2)点A与点A′关于y轴对称,则点A′的坐标是___;(3)在y轴上确定一点C,使△ABC的周长最小,求点C的坐标。25.(10分)分式化简:(a-)÷26.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【详解】解:∵S△MON=,

∴|k|=,∴∵图象过二、四象限,∴反比例函数的系数为k=-1.

故选:D.【点睛】本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.2、B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称3、B【解析】

根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,可得AF=AD+DF=AD+BC=2BC=1.【详解】解:因为,四边形ABCD是平行四边形,所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F因为,的平分线与DC交于点E,所以,∠FAE=∠BAE,∠AEB=∠AEF所以,△AEF≌△AEB所以,EF=EB,AB=AF=1所以,△DEF≌△CEB所以,BC=DF所以,AF=AD+DF=AD+BC=2BC=1所以,BC=2.1.故选B.【点睛】本题考核知识点:平行四边形、全等三角形.解题关键点:熟记平行四边形性质、全等三角形判定和性质.4、A【解析】

利用二次根式的性质对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=4a2,所以A选项的计算正确;B、原式==5a,所以B选项的计算错误;C、原式=+=2,所以C选项的计算错误;D、与不能合并,所以D选项的计算错误.故选:A.【点睛】本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5、C【解析】试题解析:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,如图,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=1.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=2.故选C.考点:平行四边形的性质.6、B【解析】

直接利用平行四边形的性质得出,,进而结合角平分线的定义得出,进而得出,求出EC的长即可.【详解】解:四边形ABCD是平行四边形,,,平分交BC于点E,,,,,,.故选B.【点睛】此题主要考查了平行四边形的性质以及角平分线的定义,正确得出是解题关键.7、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.8、B【解析】

根据“必然事件和不可能事件统称确定事件”逐一判断即可.【详解】A.向量与向量是平行向量,是随机事件,故该选项错误;B.方程有实数根,是确定事件,故该选项正确;C.直线与直线相交,是随机事件,故该选项错误;D.一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;故选:B.【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.9、C【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.二、填空题(每小题3分,共24分)11、a=−2(答案不唯一)【解析】

由图象开口向下,可得a<2.【详解】解:∵图象开口向下,∴a<2,∴a=−2,(答案不唯一).故答案为:−2.【点睛】本题考查了二次函数的性质,注意二次函数图象开口方向与系数a的关系.12、【解析】

根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点作于点,如图所示.∵是的平分线,∴.∵四边形是平行四边形,∴,∴,∴,∴,∴.∵,∴,∴BC=BE,∴,∴.∴平行四边形的面积为.故答案为:.【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.13、(1)x1=,x2=;(2)x1=2,x2=【解析】

(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【详解】解:(1),(2),,【点睛】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.14、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15、80.【解析】

根据图中的信息,找到符合条件的数据,进行计算即可.【详解】解:读图可知,超过限速110km/h的汽车有60+20=80(辆).故答案为80.【点睛】本题考查读取频数分布折线图和利用统计图获取信息的能力,对此类问题,必须要认真观察统计图、分析比较,充分利用图中的数据,从而作出正确判断.16、【解析】

利用总年龄除以总人数即可得解.【详解】解:由题意可得该班学生的平均年龄为.故答案为:14.4.【点睛】本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.17、1【解析】

因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,

∴是整数,即1n是完全平方数;

∴n的最小正整数值为1.

故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.18、1【解析】分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.详解:连接AC,

∵四边形ABCD是矩形,

∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,

∴∠E=∠DAE,

又∵BD=CE,

∴CE=CA,

∴∠E=∠CAE,

∵∠CAD=∠CAE+∠DAE,

∴∠E+∠E=30°,即∠E=1°,

故答案为1.点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.三、解答题(共66分)19、见解析.【解析】

根据“ASA”证明ΔAOE≅ΔCOF,即可证明OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD//BC.∴∠OAE=∠OCF.在ΔOAE和ΔOCF,∠OAE=∠OCFOA=OC∴ΔAOE≅ΔCOF,∴OE=OF.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、(1)证明见解析;(2)CG=;(3)∠EFC=120°或30°.【解析】分析:(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可详解:(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.点睛:本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.21、见解析【解析】

先由四边形为矩形,得出AE=CD,∠E=∠D,再由对顶角相等,即可证明△AEF≌△CDF即可.【详解】∵四边形ABCD是矩形,∴∠D=∠E,AE=CD,又∵∠AFE=∠CFD,在△AEF和△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF.22、【解析】分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,最后检验.解:方程两边同乘以,得:化简得:,解得.经检验,是原方程的根.∴原方程的解为.23、(1)详见解析;(2)【解析】

(1)首先根据题意可得,,在只需证明,即可证明≌.(2)首先利用在中,结合勾股定理计算AE,再利用等面积法计算BG即可.【详解】(1)证明:∵四边形是正方形∴,∵∴又∵∴∴≌;(2)解:∵在中,,∴又∵∴【点睛】本题主要考查正方形的性质,难度系数较低,应当熟练掌握.24、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)【解析】

(1)把A(-1,2)代入两个解析式即可得到结论;(2)根据关于y轴对称的点的特点即可得到结论;(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4,),得到A′B的解析式为y=,即可得到结论.【详解】(1)∵一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=×(−1)+b,2=−k,解得:b=,k=−2,∴一次函数解析式为:y=x+,反比例函数解析式为y=−;(2)∵点A(−1,2)与点A′关于y轴对称,∴A′(1,2),故答案为:(1,2);(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,由(2)知A′(1,2),解方程组,解得:,,∴B(−4,),设A′B的解析式为y=ax+c,把A′(1,2),B(−4,)代入得,解得:,∴A′B的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论