版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于x的分式方程有增根,则m的值是()A.0或3 B.3 C.0 D.﹣12.如图,直线经过第二、三、四象限,的解析式是,则的取值范围在数轴上表示为().A. B.C. D.3.若关于的分式方程的根是正数,则实数的取值范围().A.且 B.且C.且 D.且4.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是()A.等边三角形 B.正四边形 C.正六边形 D.正八边形5.如图,在平面直角坐标系中,是反比例函数图象上一点,是轴正半轴上一点,以,为邻边作,若点及中点都在反比例函数图象上,则的值为()A. B. C. D.6.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()A. B.5 C.3 D.7.已知两点(x1,y1),A.y1>y2>0 B.8.如图,在中,对角线、相交于点,且,,则的度数为()A.35° B.40° C.45° D.55°9.若点P到△ABC的三个顶点的距离相等,则点P是△ABC()A.三条高的交点 B.三条角平分线的交点C.三边的垂直平分线的交点 D.三条中线的交点10.如图,点M(xM,yM)、N(xN,yN)都在函数图象上,当0<xM<xN时,()A.yM<yN B.yM=yNC.yM>yN D.不能确定yM与yN的大小关系11.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1612.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.10二、填空题(每题4分,共24分)13.在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.14.如图,在平行四边形ABCD中,连接AC,按以下步骤作图:分别以点A,C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M,N,作直线MN交CD于点E,交AB于点F.若AB=5,BC=3,则△ADE的周长为__________.15.一组数据1,3,5,7,9的方差为________.16.在平面直角坐标系中,点关于轴对称的点的坐标是__________.17.如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.18.如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。三、解答题(共78分)19.(8分)如图,延长□ABCD的边AB到点E,使BE=AB,连结CE、BD、DE.当AD与DE有怎样的关系时,四边形BECD是矩形?(要求说明理由)20.(8分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.21.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种商品?22.(10分)如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1(1)分别求出这两个函数的解析式;(2)求ΔAOB的面积;(3)点P在x轴上,且ΔPOA是等腰三角形,请直接写出点P的坐标.23.(10分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.24.(10分)已知四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的度数.25.(12分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.26..
参考答案一、选择题(每题4分,共48分)1、D【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m的值.【详解】解:方程两边同乘(x-4)得∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入,得,解得m=-1故选:D【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.2、C【解析】
根据一次函数图象与系数的关系得到m-2<1且n<1,解得m<2,然后根据数轴表示不等式的方法进行判断.【详解】∵直线y=(m-2)x+n经过第二、三、四象限,∴m-2<1且n<1,∴m<2且n<1.故选C.【点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).也考查了在数轴上表示不等式的解集.3、D【解析】
先通分再化简,根据条件求值即可.【详解】解:已知关于的分式方程的根是正数,去分母得m=2x-2-4x+8,解得x=,由于根为正数,则m<6,使分式有意义,m≠2,答案选D.【点睛】本题考查分式化简,较为简单.4、C【解析】
设这个多边形的边数为n.根据题意列出方程即可解决问题.【详解】设这个多边形的边数为n,由题意(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是正六边形,故选C.【点睛】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.5、D【解析】
设A(a,),B(0,m),再根据题意列出反比例函数计算解答即可.【详解】设A(a,),B(0,m)OB的中点坐标为(0,),以OA,AB为邻边作四边形ABCD,则AC的中点坐标为(0,),点C的坐标为(-a,m-)点C及BC中点D都在反比例函数图像上点D的坐标为(-a,m-)k=-a(m-)=解得am=18,k=-6故选D【点睛】本题考查反比例函数,熟练掌握计算法则是解题关键.6、B【解析】
过D点作直线EF与平行线垂直,与l2交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=2.根据勾股定理可求CD2得正方形的面积.【详解】作EF⊥l2,交l2于E点,交l4于F点.∵l2∥l2∥l3∥l4,EF⊥l2,∴EF⊥l2,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.在△ADE和△DCF中∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=2,∴CD2=22+22=3,即正方形ABCD的面积为3.故选B.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.7、D【解析】∵反比例函数y=-5x中,k=∴此函数图象的两个分支在二、四象限,∵x1>x2>0,∴两点都在第四象限,∵在第四象限内y的值随x的增大而增大,∴y2<y1<0.故选D.8、A【解析】
由在中,对角线、相交于点,且可推出是矩形,可得∠DAB=90°进而可以计算的度数.【详解】解:在中∵∴AC=BD∵在中,AC=BD∴是矩形所以∠DAB=90°∵∴故选A【点睛】本题考查的是矩形的判定和性质.掌握是矩形的判定和性质是解题的关键.9、C【解析】
根据线段垂直平分线上的点到两端点的距离相等进行解答.【详解】解:垂直平分线上任意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:C.【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10、C【解析】
利用图象法即可解决问题;【详解】解:观察图象可知:当时,故选:C.【点睛】本题考查反比例函数图象上的点的特征,解题的关键是读懂图象信息,学会利用图象解决问题,属于中考常考题型.11、A【解析】试题分析:在Rt△ABC中,∵∠ABC=30°,∴AC=12∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于8,∴AC•BE=8,即4BE=8,∴BE=1,即平移距离等于1.故选A.考点:平移的性质.12、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.二、填空题(每题4分,共24分)13、22.5°【解析】
连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.【详解】如图:连接AC,∵ABCD是正方形∴AC=BD,∠ACB=45°,∵CE=BD∴∠CAE=∠CEA,∵∠ACB=∠CAE+∠AEC=2∠AEC=45°∴∠AEC=22.5°,故答案为:22.5°【点睛】本题考查正方形的性质,熟练掌握相关知识是解题关键.14、8【解析】
解:由做法可知MN是AC的垂直平分线,∴AE=CE.∵四边形ABCD是平行四边形∴CD=AB=5,AD=BC=3.∴AD+DE+AE=AD+DE+CE=AD+CD=5+3=8,∴△ADE的周长为8.15、8【解析】
根据方差公式S2=计算即可得出答案.【详解】解:∵数据为1,3,5,7,9,∴平均数为:=5,∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.故答案为8.【点睛】本题考查方差的计算,熟记方差公式是解题关键.16、【解析】
根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.【详解】点关于轴对称的点的坐标是.故答案为:.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.17、70【解析】
首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC≌△A′B′C,∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.18、【解析】
如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.【详解】解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,∵DH⊥BC于H,∴∠DHC=90°,∵BE∥DH,∴∠EBC=90°,∵∠EBC=90°,∵K为BE的中点,BE=2DH,∴BK=DH.∵BK∥DH,∴四边形DKBH为矩形,DK∥BH,∴DK⊥BE,∠KDB=∠DBC,∴DE=DB,∠EDB=2∠KDB,∵∠ADC=2∠DBC,∴∠EDB=∠ADC,∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,在△EDC、△BDA中,,∴△EDC≌△BDA,∴AB=CE,∴,∴AB=.【点睛】本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.三、解答题(共78分)19、当AD=DE时,四边形BECD是矩形,理由见解析.【解析】
根据平行四边形的性质和已知条件易证四边形BECD为平行四边形,要使四边形BECD是矩形,根据矩形的定义,只要满足DB⊥BE即可,进而可得AD与DE的关系.【详解】解:当AD=DE时,四边形BECD是矩形,理由如下:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∵BE=AB,∴BE∥DC,BE=DC,∴四边形BECD为平行四边形,∵AD=DE,∴DB⊥BE,∴□BECD为矩形.【点睛】本题考查了平行四边形的性质、等腰三角形的性质和矩形的判定,属于常考题型,熟练掌握上述基本知识是解题的关键.20、(1)1;(2)证明见解析;(1)在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).【解析】分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=MP,MB=OM,OE=ON,NO=NP,可得PC与OE,CM与NE,BM与ND,OB与PD的关系,根据全等三角形的判定与性质,可得BE与CD,BC与DE的关系,根据平行四边形的判定,可得答案;(1)根据正方形的判定与性质,可得BE与BC的关系,∠CBM与∠EBO的关系,根据全等三角形的判定与性质,可得OE与BM的关系,可得P点坐标间的关系,可得答案.本题解析:(1)一次函数y=﹣x+b的图象过点A(0,1),1=﹣×0+b,解得b=1.故答案为:1;(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,NO=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,,∴△OBE≌△PDC(SAS),BE=DC.在△MBC和△NDE中,,∴△MBC≌△NDE(SAS),DE=BC.∵BE=DC,DE=BC,∴四边形BCDE是平行四边形;(1)设P点坐标(x,y),当△OBE≌△MCB时,四边形BCDE为正方形,OE=BM,当点P在第一象限时,即y=x,x=y.P点在直线上,,解得,当点P在第二象限时,﹣x=y,解得在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).点睛:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.21、(1)甲,乙两种商品每件的价格各为48,40元;(2)最多可购买50件甲种商品【解析】
(1)根据题意:用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同,设立未知数,建立方程解出来即可(2)根据经费不超过3600元建立不等式关系,解出即可【详解】解:(1)设每件乙种商品的价格为元,则每件甲种商品的价格为元,根据题意,得,解得.经检验:是原方程的解即:甲,乙两种商品每件的价格各为48,40元.(2)设购买甲种商品件,则购买乙种商品件.由题意知:解得:.即:最多可购买50件甲种商品.【点睛】本题考查分式方程的应用题和不等式应用问题,关键在于找到等量关系,根据等量关系建立方程或者不等式是关键.22、(1)y=34x;y=2x-5;(2)10;(3)(-5,0)或(5,0)或【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.【详解】解:(1)∵正比例函数y=k1x∴4k∴k∴正比例函数解析式为y=如图1中,过A作AC⊥x轴于C,在RtΔAOC中,OC=4,AC=3AO=∴OB=OA=5∴B(0,-5)∴4k∴一次函数解析式为y=2x-5(2)如图1中,过A作AD⊥y轴于D,∵A(4,3)∴AD=4∴(3))如图2中,当OP=OA时,P1(−5,0),P2(5,0),当AO=AP时,P3(8,0),当PA=PO时,线段OA的垂直平分线为y=−43x+∴P4(∴满足条件的点P的坐标(-5,0)或(5,0)或(8,0)或(【点睛】此题考查一次函数综合题,解题关键在于作辅助线.23、当时,四边形ABQP为矩形;当时,四边形AQCP为菱形.
【解析】
当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;【详解】由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- nba促发安全协议书
- 投资宾馆协议书
- 协议书招投标
- 补签用电协议书
- 2025版产品购销合同范本
- tls和ssl协议书分析
- 委托经营协议书范本
- 2025标准劳动合同格式范本
- 2025年短视频创作者商业合作合同协议
- 2025年社区志愿者招募培训行业服务效果提升策略
- 安徽省江淮十校2024届高三第二次联考数学试题
- 华为经营管理-华为供应链管理(6版)
- JGT491-2016 建筑用网格式金属电缆桥架
- 三通、大小头面积计算公式
- 建筑工程冬期施工规程JGJ/T 104-2011
- 血液病学课件:淋巴瘤完整版
- 联通创新能力考试复习题库大全-上(单选题汇总)
- 铜及铜合金的水平连铸课件
- iso9000基础知识解读课件
- 韦氏成人智力测验(完全版)
- 皮带通廊钢结构制作安装施工方案
评论
0/150
提交评论