江苏省如皋实验2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第1页
江苏省如皋实验2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第2页
江苏省如皋实验2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第3页
江苏省如皋实验2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第4页
江苏省如皋实验2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数 C.众数 D.方差2.下列事件是随机事件的是()A.购买一张福利彩票,中特等奖B.在一个标准大气压下,纯水加热到100℃,沸腾C.任意三角形的内角和为180°D.在一个仅装着白球和黑球的袋中摸出红球3.在四边形中,对角线和交于点,下列条件能判定这个四边形是菱形的是()A., B.,,C.,, D.,,4.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个 B.2个 C.3个 D.4个5.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.56.要使二次根式有意义,则的取值范围是()A. B. C. D.7.下列式子:①;②;③;④.其中是的函数的个数是()A.1 B.2 C.3 D.48.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是A. B. C. D.9.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是()A.4 B.5 C.6 D.710.关于x的一元二次方程有两个实数根,则实数m的取值范围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠1二、填空题(每小题3分,共24分)11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.13.在一列数2,3,3,5,7中,他们的平均数为__________.14.某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=1.32,S乙2=1.26,则应选________参加这项比赛(填“甲”或者“乙”)15.若xy=3,则16.因式分解:_________17.若一个多边形的内角和与外角和之和是1800°,则此多边形是___边形.18.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.三、解答题(共66分)19.(10分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE(1)如图1,连接BG、DE,求证:BG=DE(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD①求∠BDE的度数②若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________20.(6分)阅读下列材料,并解爷其后的问题:我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且(1)在图1中,若的面积为15,则的面积为___________;(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.21.(6分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.22.(8分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.23.(8分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.24.(8分)某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.(1)该网店共有几种进货方案?(2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值25.(10分)已知抛物线,与轴交于、,(1)若,时,求线段的长,(2)若,时,求线段的长,(3)若一排与形状相同的抛物线在直角坐标系上如图放置,且每相邻两个的交点均在轴上,,若之间有5个它们的交点,求的取值范围.26.(10分)定义:任意两个数,,按规则得到一个新数,称所得的新数为数,的“传承数.”(1)若,,求,的“传承数”;(2)若,,且,求,的“传承数”;(3)若,,且,的“传承数”值为一个整数,则整数的值是多少?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.

故选B.【点睛】本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、A【解析】选项A,购买一张福利彩票,中特等奖,是随机事件;选项B,在一个标准大气压下,纯水加热到100℃,沸腾,是必然事件;选项C,任意三角形的内角和为180°,是必然事件;选项D,在一个仅装着白球和黑球的袋中摸出红球,是不可能事件.故选A.3、D【解析】

根据菱形的判定方法逐一进行判断即可.【详解】A.由,只能判定四边形是平行四边形,不一定是菱形,故该选项错误;B.由,,只能判定四边形是矩形,不一定是菱形,故该选项错误;C.由,,可判断四边形可能是等腰梯形,不一定是菱形,故该选项错误;D.由,能判定四边形是菱形,故该选项正确;故选:D.【点睛】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.4、D【解析】

根据“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象可知:行驶里程不超过5公里计费8元,即①正确;“滴滴顺风车”行驶里程超过2公里的部分,每公里计费为(14.1﹣5)÷(10﹣2)=1.2(元),故②正确;设x≥5时,“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y1=k1x+b1,将点(5,8)、(10,11)代入函数解析式得:,解得:.∴“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y1=1.1x;当x≥2时,设“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y2=k2x+b2,将点(2,5)、(10,14.1)代入函数解析式得:,解得:.∴“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y2=1.2x+2.1.联立y1、y2得:,解得:.∴A点的坐标为(1.5,10.4),③正确;令x=15y1=1.1×15=24;令x=15,y2=1.2×15+2.1=20.1.y1﹣y2=24﹣20.1=3.4(元).即从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元,④正确.综上可知正确的结论个数为4个.故选D.5、A【解析】试题分析:过点P作PE⊥OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.解:如图,过点P作PE⊥OA于E,∵OC平分∠AOB,PD⊥OB,∴PE=PD=3,∵动点Q在射线OA上运动,∴PQ≥3,∴线段PQ的长度不可能是1.故选A.点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.6、D【解析】

根据二次根式有意义的条件进行求解即可.【详解】∵二次根式有意义∴解得故答案为:D.【点睛】本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.7、C【解析】

根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【详解】解:①y=3x-5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数.④,y是x的函数.以上是的函数的个数是3个.故选:C.【点睛】本题主要考查的是函数的概念,掌握函数的定义是解题的关键.8、D【解析】

根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.【详解】根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.故选D.【点睛】本题主要考查正方形的折叠问题,关键在于确定数量.9、B【解析】

如果设A点关于y轴的对称点为A′,那么C点就是A′B与y轴的交点.易知A′(-3,3),又B(1,0),可用待定系数法求出直线A′B的方程.再求出C点坐标,根据勾股定理分别求出AC、BC的长度.那么光线从A点到B点经过的路线长是AC+BC,从而得出结果.【详解】解:如果将y轴当成平面镜,设A点关于y轴的对称点为A′,则由光路知识可知,A′相当于A的像点,光线从A到C到B,相当于光线从A′直接到B,所以C点就是A′B与y轴的交点.∵A点关于y轴的对称点为A′,A(3,3),∴A′(-3,3),进而由两点式写出A′B的直线方程为:y=−(x-1).令x=0,求得y=.所以C点坐标为(0,).那么根据勾股定理,可得:AC==,BC==.因此,AC+BC=1.故选:B.【点睛】此题考查轴对称的基本性质,勾股定理的应用等知识点.此题考查的思维技巧性较强.10、C【解析】

解:∵关于x的一元二次方程有两个实数根,∴,解得:m≥0且m≠1.故选C.二、填空题(每小题3分,共24分)11、1【解析】

首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.3,a,2b,5与a,1,b的平均数都是1.【详解】解:∵两组数据:3,a,2b,5与a,1,b的平均数都是1,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,一共7个数,中间的数是1,所以中位数是1.故答案为1.12、9【解析】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E.

F分别是AO、AD的中点,(cm),故答案为2.5.13、1【解析】

直接利用算术平均数的定义列式计算可得.【详解】解:这组数据的平均数为=1,故答案为:1.【点睛】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.14、乙【解析】

根据方差的意义即可解答.【详解】∵S甲2=1.32>S乙2=1.26∴乙更加稳定【点睛】本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.15、1【解析】

根据比例的性质即可求解.【详解】∵xy=3,∴x=3y,∴原式=3y+yy故答案为:1.【点睛】本题考查了比例的性质,关键是得出x=3y.16、x(x-9)【解析】分析:直接提取公因式x,进而分解因式即可.详解:x2﹣9x=x(x﹣9).故答案为:x(x﹣9).点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.17、十【解析】

试题分析:设所求n边形边数为n,先根据多边形的外角和为360度得到多边形的内角和,再根据多边形的内角和公式,即可得到结果.由题意得多边形的内角和为1800°-360°=1440°,设所求n边形边数为n,则180°(n-2)=1440°,解得n=10,则此多边形是十边形.考点:本题考查的是多边形的内角和公式,多边形的外角和点评:解答本题的关键是熟练掌握多边形的内角和公式:180°(n-2),任意多边形的外角和均是360度,与边数无关.18、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共66分)19、(1)见解析;(2)①∠BDE=60°;②−1.【解析】

(1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;(2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,从而求出结论.【详解】(1)证明:∵四边形ABCD和CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)①连接BE.由(1)可知:BG=DE.∵CG∥BD,∴∠DCG=∠BDC=45°.∴∠BCG=∠BCD+∠GCD=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°−∠BCG−∠GCE=360°−135°−90°=135°.∴∠BCG=∠BCE.∵BC=BC,CG=CE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS).∴BG=BE.∵BG=BD=DE,∴BD=BE=DE.∴△BDE为等边三角形。∴∠BDE=60°.②延长EC交BD于点H,在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD.∵BC=CD=,在Rt△BCD中由勾股定理,得∴BD=2.∴BH=1.∴CH=1.在Rt△BHE中,由勾股定理,得EH=,∴CE=−1.∴正方形CEFG的边长为−1.【点睛】此题考查四边形综合题,全等三角形的判定与性质,等边三角形的判定,勾股定理,正方形的性质,解题关键在于作辅助线和掌握判定定理.20、(1);(2)见解析;(3)1.【解析】

(1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;

(2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;

(3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD=,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.【详解】(1)解:∵D、E、F分别是△ABC三边的中点,

则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,

∴△DEF的面积=△ABC的面积=;

故答案为;

(2)证明:连接BD,如图2所示:

∵E、F、G、H分别是AB、BC、CD、AD的中点,

∴EH是△ABD的中位线,FG是△BCD的中位线,

∴EH∥BD,EH=BD,FG∥BD,FG=BD,

∴EH∥FG,EH=FG,

∴四边形EFGH是平行四边形;

(3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,

∴EH是△ABD的中位线,FG是△BCD的中位线,

∴EH∥BD,EH=BD=,FG∥BD,FG=BD,

∴EH∥FG,EH=FG,

∴四边形EFGH是平行四边形,

同理:EF∥AC,EF=AC=2,

∵AC⊥BD,

∴EH⊥EF,

∴四边形EFGH是矩形,

∴四边形EFGH的面积=EH×EF=×2=1.故答案为(1);(2)见解析;(3)1.【点睛】本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.21、(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.【解析】【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【详解】(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.【点睛】本题考查了全等三角形的判定与性质、矩形的判定等,熟练掌握全等三角形的判定与性质是解题的关键.22、见解析.【解析】

首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.【详解】证明:∵,,∴四边形是平行四边形,又∵四边形是菱形,∴,∴,∴平行四边形是矩形.∴四边形是矩形【点睛】本题考查了矩形的判定,菱形的性质,掌握矩形的判定和菱形的性质是解题的关键.23、(1)200;(2)作图略;(3)108°;(4)1.【解析】试题分析:根据其他的人数和比例得出总人数;根据总人数和比例求出古筝和琵琶的人数;根据二胡的人数和总人数的比例得出圆心角的度数;根据总人数和喜欢古筝的比例得出人数.试

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论