江苏省淮安市淮阴师范院附属中学2023年数学八下期末综合测试试题含解析_第1页
江苏省淮安市淮阴师范院附属中学2023年数学八下期末综合测试试题含解析_第2页
江苏省淮安市淮阴师范院附属中学2023年数学八下期末综合测试试题含解析_第3页
江苏省淮安市淮阴师范院附属中学2023年数学八下期末综合测试试题含解析_第4页
江苏省淮安市淮阴师范院附属中学2023年数学八下期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图中,点为边上一点,点在上,过点作交于点,过点作交于,下列结论错误的是()A. B. C. D.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.23.下列各组数中,可以构成直角三角形的三边长的是()A.1,2,3 B.2,3,4 C.1,, D.1,,34.如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是()A.4 B.3 C.2 D.15.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.6.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在()A.x轴上 B.第三象限 C.y轴上 D.第四象限7.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.16 B.18 C.20 D.228.已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有()A.2018个 B.2017个 C.4028个 D.4036个9.如图,菱形中,对角线、相交于点,、分别是边、的中点,连接、、,则下列叙述正确的是()A.和都是等边三角形B.四边形和四边形都是菱形C.四边形与四边形是位似图形D.且10.函数与在同一坐标系中的图象可能是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,某公司准备和一个体车主或一民营出租车公司中的一家签订月租车合同,设汽车每月行驶,个体车主收费为元,民营出租车公司收费为元,观察图像可知,当_________时,选用个体车主较合算.12.写出一个轴对称图形但不是中心对称图形的四边形:__________________13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.14.有一组数据:3,,4,6,7,它们的平均数是5,那么这组数据的方差是______.15.若,则=______.16.在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.17.如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.18.实数,在数轴上对应点的位置如图所示,化简的结果是__________.三、解答题(共66分)19.(10分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD=20,求AB和CD的长.20.(6分)已知E、F分别是平行四边形ABCD中BD上的点,且BE=DF,试说明,四边形AECF是平行四边形。21.(6分)某校需要招聘一名教师,对三名应聘者进行了三项素质测试下面是三名应聘者的综合测试成绩:应聘者成绩项目ABC基本素质706575专业知识655550教学能力808585(1)如果根据三项测试的平均成绩确定录用教师,那么谁将被录用?(2)学校根据需要,对基本素质、专业知识、教学能力的要求不同,决定按2:1:3的比例确定其重要性,那么哪一位会被录用?22.(8分)先化简,再求值:(3x-1﹣x﹣1)÷x-2x2-2x+1,其中23.(8分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.24.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.(10分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.26.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例,即可得解.【详解】根据三角形的平行线定理,可得A选项,,错误;B选项,,正确;C选项,,正确;D选项,,正确;故答案为A.【点睛】此题主要考查三角形的平行线定理,熟练掌握,即可解题.2、C【解析】过点P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分别平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故选C.3、C【解析】

根据勾股定理的逆定理,判断三角形是否为直角三角形,需要验证三角形三边关系,两小边长的平方和等于最长边的平方即可.【详解】A.,不能构成直角三角形,此选项错误;B.,不能构成直角三角形,此选项错误;C.,能构成直角三角形,此选项正确;D.,不能构成直角三角形,此选项错误;故选:C.【点睛】考查了勾股定理的逆定理,利用三角形三边关系判定三角形是否为直角三角形,用到实数平方的计算,熟记定理内容,注意判定时,边长是平方关系.4、A【解析】

由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED=60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.5、D【解析】

由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、D【解析】

让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.【详解】∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.故选D.【点睛】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.7、C【解析】试题分析:根据平行四边形的性质可得AO=6,则根据Rt△AOB的勾股定理得出BO=10,则BD=2BO=20.考点:平行四边形的性质8、D【解析】

写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.【详解】第1,2个图形各有4个直角三角形;第3,4个图形各有8个直角三角形;第5,6个图形各有12个直角三角形……第2017,2018个图形各有4036个直角三角形,故选:D.【点睛】本题主要考查了中点四边形、图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键.9、C【解析】

根据菱形的性质及直角三角形的性质即可判断.【详解】∵、分别是边、的中点,AC⊥BD,∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A错误;∵MN=BD=BO=DO,∴四边形和四边形都是平行四边形,B错误;由AM=AB,AO=AC,AN=AD,∴四边形与四边形是位似图形,正确;∵、O分别是边、AC的中点∴,但是不一定等于CO,故D错误.故选C【点睛】此题主要考查菱形的性质,解题的关键是熟知中位线定理与直角三角形的性质.10、D【解析】

根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数与中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D.【点睛】本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

选用个体车较合算,即对于相同的x的值,y1对应的函数值较小,依据图象即可判断.【详解】解:根据图象可以得到当x>1500千米时,y1<y2,则选用个体车较合算.故答案为【点睛】此题为一次函数与不等式的简单应用,搞清楚交点意义和图象的相对位置是关键.12、等腰梯形(答案不唯一)【解析】

根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.【详解】是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.故答案为:等腰梯形(答案不唯一).【点睛】此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.13、1.【解析】

∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为114、2【解析】试题分析:已知3,a,4,6,1.它们的平均数是5,根据平均数的公式可得a=5×5﹣3﹣4﹣6﹣1=5,所以这组数据的方差是s2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(1﹣5)2]=2.考点:平均数;方差.15、1【解析】

根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案【详解】∵∴∴∴故答案为1.【点睛】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.16、【解析】

四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.【详解】依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、(2,3)、(2,-4)、(3,-4),要使反比例函数y=kx的图象在第二、四象限,则k<0,这样的情况有3种即(1,-4)、(2,-4)、(3,-4),故概率为:=.【点睛】本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.17、1【解析】

分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.18、【解析】由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.三、解答题(共66分)19、(1)证明:∵AB为⊙O的直径,AB⊥CD,∴,∴(2),【解析】试题分析:(1)由于AB为直径且AB⊥CD,由此可知B点将平分,所以,由此推出(2)∵AB为⊙O的直径,∴,∴,∵,∴,∴,∵AB为⊙O的直径,AB⊥CD,∴考点:直径垂直平分线的性质,勾股定理的计算点评:本题难度不大,需要记住的是圆的直径和直角三角形的关系20、见详解.【解析】

先根据四边形ABCD为平行四边形得出OA=OC,OB=OD,再证明OE=OF,即可证明四边形AECF是平行四边形.【详解】四边形ABCD为平行四边形OA=OC,OB=ODBE=DFOE=OF四边形AECF是平行四边形.【点睛】本题考查了平行四边形的判定及性质定理,熟练掌握对角线互相平分的四边形是平行四边形为解题的关键.21、(1)A将被录用;(2)C将被录用.【解析】

(1)根据算术平均数的计算公式进行计算即可,(2)根据加权平均数的计算公式进行计算即可【详解】解:的平均成绩为:分,B的平均成绩为:分,C的平均成绩为:分,则根据三项测试的平均成绩确定录用教师,A将被录用,的测试成绩为:分,B的测试成绩为:分,C的测试成绩为:分,则按2:1:3的比例确定其重要性,C将被录用.【点睛】本题主要考查算术平均数和加权平均数的计算公式,解决本题的关键是要熟练掌握算术平均数和加权平均数的计算公式.22、﹣x1﹣x+1,﹣2【解析】

先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】(3x-1﹣x﹣1)÷=(3=-(x+2)(x-2)x-1=﹣(x﹣1)(x+1)=﹣x1﹣x+1,当x=1时,原式=﹣2﹣1+1=﹣2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.23、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】

(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;

(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;

(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t

在矩形ABCD中,∠B=90°,AD∥BC,

当BQ=AP时,四边形ABQP为矩形,

∴t=6-t,得t=3

故当t=3s时,四边形ABQP为矩形.

(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形

∴当AQ=CQ时,四边形AQCP为菱形

即=6−t时,四边形AQCP为菱形,解得t=,

故当t=s时,四边形AQCP为菱形.

(3)当t=时,AQ=,CQ=,

则周长为:4AQ=4×=15cm

面积为:CQ•AB=×3=.【点睛】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.24、(1)详见解析;(2)详见解析;(3)详见解析.【解析】

(1)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质即可证得CF=EF;(2)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论;(3)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论.【详解】(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,AC=DE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,AC=DE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.【点睛】本题考查了全等三角形的性质与判定,证明Rt△BCF≌Rt△BEF是解决问题的关键.25、(1)证明见解析;(2)∠BDM的度数为45°;(3)∠BDG的度数为60°.【解析】

(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.【详解】(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论