湖北省武汉二中学广雅中学2022-2023学年八年级数学第二学期期末联考模拟试题含解析_第1页
湖北省武汉二中学广雅中学2022-2023学年八年级数学第二学期期末联考模拟试题含解析_第2页
湖北省武汉二中学广雅中学2022-2023学年八年级数学第二学期期末联考模拟试题含解析_第3页
湖北省武汉二中学广雅中学2022-2023学年八年级数学第二学期期末联考模拟试题含解析_第4页
湖北省武汉二中学广雅中学2022-2023学年八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,平行四边形的对角线与相交于点,下列结论正确的是()A.B.C.D.是轴对称图形2.刘主任乘公共汽车从昆明到相距60千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快20千米/时,回来时路上所花时间比去时节省了35小时,设公共汽车的平均速度为x千米/A.60x+20=C.60x+20+3.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是()A.1个 B.1个 C.3个 D.4个4.若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.-4<b<8 B.-4<b<0 C.b<-4或b>8 D.-4≤6≤85.已知点都在反比例函数图象上,则的大小关系()A.. B.C. D.6.如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AEA.只有①② B.只有①②③C.只有③④ D.①②③④7.一次函数y=kx+b中,y随x的增大而增大,b>0,则这个函数的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D.29.正多边形的内角和为540°,则该多边形的每个外角的度数为()A.36° B.72° C.108° D.360°10.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.11.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为抢占市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.5C.2D.2.512.下列二次根式中,能与合并的是()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.14.如图,在平行四边形中,,将平行四边形绕顶点顺时针旋转到平行四边形,当首次经过顶点时,旋转角__________.15.如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.16.“6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折17.已知:,则=_____.18.化简:(+2)(﹣2)=________.三、解答题(共78分)19.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.20.(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.(8分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?22.(10分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.(1)在图1中,①和的位置关系为__________________;②将剪下后展开,得到的图形是_________________;(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由23.(10分)某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.年对、两区的空气量进行监测,将当月每天的空气污染指数(简称:)的平均值作为每个月的空气污染指数,并将年空气污染指数绘制如下表.据了解,空气污染指数时,空气质量为优:空气污染指数时,空气质量为良:空气污染指数时,空气质量为轻微污染.月份地区区区(1)请求出、两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对区、区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.(10分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.25.(12分)直线过点,直线过点,求不等式的解集.26.在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】

由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选A.【点睛】此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.2、C【解析】

设公共汽车的平均速度为x千米/时,则出租车的平均速度为x+20千米/时,根据时间关系可得出方程.【详解】解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为x+20千米/时,根据题意得出:60x+20故选:C.【点睛】考核知识点:列分式方程.理解时间关系是关键.3、D【解析】

①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;③由整理即可判断结论③正确;④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.【详解】解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=-4代入y=nx+4n,得y=-4n+4n=0,∴直线y=nx+4n一定经过点(-4,0).故结论②正确;③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,∴当x=-1时,y=1+m=-1n+4n,∴m=1n-1.故结论③正确;④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,∴当x>-1时,nx+4n>-x+m,故结论④正确.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.4、A【解析】

联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由解得∵交点在第三象限,∴,解得∴-4<b<1.故选A.5、B【解析】

根据反比例函数图象的性质:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小判断求解即可.【详解】解:∵中,,∴图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小,∵点A、B位于第一象限,且,∴,∵点C位于第三象限,∴∴的大小关系是:故选:B.【点睛】本题考查的知识点是反比例函数的性质,掌握反比例函数的图象和性质是解此题的关键.6、B【解析】

根据题意,结合图形,对选项一一求证,判定正确选项.【详解】解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,

∵△ABE、△ADF都是等边三角形,

∴AD=DF,AB=EB,∠ADF=∠ABE=60°,

∴DF=BC,CD=BC,

∴∠CDF=360°-∠ADC-60°=300°-∠ADC,

∠EBC=360°-∠ABC-60°=300°-∠ABC,

∴∠CDF=∠EBC,

在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,

∴△CDF≌△EBC(SAS),故①正确;

在▱ABCD中,∠DAB=180°-∠ADC,

∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,

∴∠CDF=∠EAF,故②正确;

同理可证△CDF≌△EAF,

∴EF=CF,

∵△CDF≌△EBC,

∴CE=CF,

∴EC=CF=EF,

∴△ECF是等边三角形,故③正确;

当CG⊥AE时,∵△ABE是等边三角形,

∴∠ABG=30°,

∴∠ABC=180°-30°=150°,

∵∠ABC=150°无法求出,故④错误;

综上所述,正确的结论有①②③.

故选B.【点睛】本题考查了全等三角形的判定、等边三角形的判定和性质、平行线的性质等知识,综合性强,考查学生综合运用数学知识的能力.7、D【解析】

先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=kx+b中,y随x的增大而增大,∴k0.∵b0,∴此函数的图象经过第一、二、三象限,不经过第四象限.故选D.点睛:本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k的正负.8、A【解析】

根据矩形的性质可证明,都是等边三角形,根据等边三角形的性质即可求出OE的长,即可的答案;【详解】四边形ABCD是矩形,,垂直平分相等OD,,,,都是等边三角形,,OD=,,故选A.【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、B【解析】

先根据内角和的度数求出正多边形的边数,再根据外角和度数进行求解.【详解】设这个正多边形的边数为x,则(x-2)×180°=540°,解得x=5,所以每个外角的度数为360°÷5=72°,故选B.【点睛】此题主要考查多边形的内角和公式,解题的关键是熟知多边形的内角和与外角和公式.10、D【解析】

分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.11、A【解析】

此题是一元二次方程的实际问题.设售价为x元,则每件的利润为(x-40)元,由每降价1元,可多卖20件得:降价(60-x)元可增加销量20(60-x)件,即降价后的销售量为[300+20(60-x)]件;根据销售利润=销售量×每件的利润,可列方程求解.需要注意的是在实际问题中,要注意分析方程的根是否符合实际问题,对于不合题意的根要舍去.【详解】设售价为x元时,每星期盈利为6120元,由题意得(x﹣40)[300+20(60﹣x)]=6120,解得:x1=57,x2=58,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=58,所以,必须降价:60-57=3(元).故选:A【点睛】本题考核知识点:一元二次方程的实际问题.解题关键点:理解题意,根据数量关系列出方程.12、C【解析】

将各式化为最简二次根式后即可判断【详解】(A)原式=2,故不能合并,(B)原式=3,故不能合并,(C)原式=2,故能合并,(D)原式=,故不能合并,故选C【点睛】此题考查二次根式,掌握运算法则是解题关键二、填空题(每题4分,共24分)13、【解析】

根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【详解】解:在平面直角坐标系xOy中,将点N(-1,-2)绕点O旋转180°,得到的对应点的坐标是(1,2),故答案为:(1,2)【点睛】本题考查坐标与图形变化-旋转,解答本题的关键是明确题意,熟知坐标变化规律.14、36°【解析】

由旋转的性质可知:▱ABCD全等于▱ABCD,得出BC=BC,由等腰三角形的性质得出∠BCC=∠C,由旋转角∠ABA=∠CBC,根据等腰三角形的性质计算即可.【详解】∵▱ABCD绕顶点B顺时针旋转到▱ABCD,∴BC=BC,∴∠BCC=∠C,∵∠A=72°,∴∠C=∠C=72°,∴∠BCC=∠C,∴∠CBC=180°−2×72°=36°,∴∠ABA=36°,故答案为36.【点睛】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握其性质得出∠BCC=∠C.15、1、、1﹣【解析】

过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,则BE=,∴当BE=时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴当BE=1﹣时,△CDF是等腰三角形.综上,当BE=1、、1﹣时,△CDF是等腰三角形.故答案为:1、、1﹣.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.16、八.【解析】

设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,

由题意得360×0.1x-240≥240×20%,

解得:x≥1.

则要保持利润不低于20%,至多打1折.

故答案为:八.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.17、【解析】

直接利用已知用同一未知数表示出x,y,z的值,进而代入化简即可.【详解】∵,∴设x=4a,则y=3a,z=2a,则原式==.故答案为.【点睛】本题考查了比例的性质,正确用一个未知数表示出各数是解题的关键.18、1【解析】根据平方差公式,(+2)(﹣2)=()2﹣22=5﹣4=1.故答案为:1.三、解答题(共78分)19、见解析【解析】

(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形,∠2=∠AED,又∵DE平分∠ADC,∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)在菱形AEFD中,∵∠DAB=60°,∴△AED为等边三角形.∴DE=2.连接AF,与DE相交于O,则.∴.∴.∴.20、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】

(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.21、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【解析】

设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.【详解】设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有,解得x=20,经检验:x=20是原分式方程的解,且符合题意,则1.2x=1.答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【点睛】本题考查分式方程的应用和理解题意能力,关键是设出采用新工艺之前每小时加工x个,然后表示出采用新工艺后每小时加工多少个,再以时间做为等量关系列方程求解.22、(1)①平行;②菱形;(2)结论①、②都成立,理由详见解析.【解析】

(1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;

(2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.【详解】解:(1)①∵四边形ABCD是矩形

∴AD∥BC,∠B=∠ADC=90°

∴∠DAC=∠ACB

∵将矩形纸片ABCD沿对角线AC翻折,

∴∠AB'C=∠B=90°,∠ACB=∠ACE

∴∠DAC=∠ACE,

∴AE=EC

∵∠AB'C=∠ADC=90°

∴点A,点C,点D,点B'四点共圆,

∴∠ADB'=∠ACE,

∴∠ADB'=∠DAC

∴B'D∥AC,

故答案为:平行

②∵将△AEC剪下后展开,AE=EC

∴展开图形是四边相等的四边形,

∴展开图形是菱形(2)都成立,

如图2,设点E的对应点为F,

∵四边形ABCD是平行四边形

∴AD∥BC,

∴∠DAC=∠ACB

∵将矩形纸片ABCD沿对角线AC翻折,

∴∠ACB=∠ACE,AF=AE,CE=CF

∴∠DAC=∠ACE,

∴AE=EC

∴AF=AE=CE=CF四边形是菱形.【点睛】本题是四边形综合题,考查了矩形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论