




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种2.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B. C.-1 D.+13.正五边形的每个内角度数是(
)A.60°
B.90°
C.108°D.120°4.已知,则的值为()A.2x5 B.—2 C.52x D.25.在中,,,,则的长为()A.3 B.2 C. D.46.如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为()A. B. C. D.7.下列命题中,为假命题的是()A.两组邻边分别相等的四边形是菱形 B.对角线互相垂直平分的四边形是菱形C.四个角相等的四边形是矩形 D.对角线相等的平行四边形是矩形8.下列几组数中,不能作为直角三角形三边长度的是()A.3,4,5 B.5,7,8 C.8,15,17 D.1,9.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B. C. D.10.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.中位数是75 B.平均数是80 C.众数是80 D.极差是15二、填空题(每小题3分,共24分)11.对于实数,,,表示,两数中较小的数,如,.若关于的函数,的图象关于直线对称,则的取值范围是__,对应的值是__.12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.13.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______14.如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.15.已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.16.要使在实数范围内有意义,a应当满足的条件是_____.17.观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.18.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.三、解答题(共66分)19.(10分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.20.(6分)如图,在中,分别是边上的点,连接,且.求证:;如果是的中点,,求的长,21.(6分)俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.(1)求甲、乙两种品牌的足球的单价各是多少元?(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?22.(8分)某校八年级学生全部参加“禁毒知识竞赛”,从中抽取了部分学生,将他们的竞赛成绩进行统计后分为,,,四个等次,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(1)抽取了_______名学生成绩;(2)扇形统计图中等级所在扇形的圆心角度数是_________;(3)为估算全校八年级“禁毒知识竞赛”平均分,现将、、、依次记作分、分、分、分,请估算该校八年级知识竞赛平均分.23.(8分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.24.(8分)一种五米种子的价格为5元/kg,A如果一次购买2kg以上的种子,超过2kg部分的种子价格打八折.(1)填写表:购买量/kg0.511.522.533.54…付款金额/元(2)写出付款金额关于购买量的函数解析式,并画出函数图象.25.(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?26.(10分)(1)解方程:.(2)先化简,再求值:,其中.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.2、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、C【解析】
先根据多边形的内角和公式(n-2)•180°求出内角和,然后除以5即可;【详解】根据多边形内角和定理可得:(5-2)•180°=540°,
540°÷5=108°;故选:C.【点睛】考查了正多边形的内角与外角的关系,解题关键熟记、运用求多边形内角和公式(n-2)•180°.4、C【解析】
结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.5、D【解析】
根据,可得,再把AB的长代入可以计算出CB的长.【详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.6、B【解析】
连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:如图,连接BB′,
∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,,
∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,,
∴AB==4,
∴BD=,
C′D=2,
∴BC′=BD-C′D=.
故选B.【点睛】本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.7、A【解析】
根据特殊的平行四边形的判定即可逐一判断.【详解】解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.【点睛】本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.8、B【解析】
根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.9、D【解析】
先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.【详解】直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.10、A【解析】
根据平均数,中位数,众数及极差的概念进行判断.【详解】解:将6名同学的成绩从小到大排列,第3、4个数都是80,故中位数是80,∴答案A是错误的,其余选项均正确.故选:A.【点睛】本题重点考查平均数,中位数,众数及极差的概念及其求法.二、填空题(每小题3分,共24分)11、或,6或3.【解析】
先根据函数可知此函数的对称轴为y轴,由于函数关于直线x=3对称,所以数,的图象即为的图象,据此解答即可【详解】设,①当与关于对称时,可得,②在,中,与没重合部分,即无论为何值,即恒小于等于,那么由于对对称,也即对于对称,得,.综上所述,或,对应的值为6或3故答案为或,6或3【点睛】此题考查函数的最值及其几何意义,解题关键在于分情况讨论12、55【解析】
利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.13、0<k<2【解析】
根据一次函数的定义即可解答.【详解】解:已知已知直线y=(k﹣2)x+k经过第一、二、四象限,故,即0<k<2.【点睛】本题考查一次函数的定义与图像,较为简单.14、①③④【解析】
由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④【点睛】本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.15、3.5【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.16、a⩽3.【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【详解】∵在实数范围内有意义,∴3−a⩾0,解得a⩽3.故答案为:a⩽3.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.17、【解析】
第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【详解】解:∵①,
②,
③,……
∴第n个式子为:,
∴第6个等式为:
故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18、1【解析】分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=10°,∵AD=6,∴CD=1,又∵DE⊥AB,∴DE=DC=1.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.三、解答题(共66分)19、两船相距200,画图见解析.【解析】
根据题意画出图形,利用勾股定理求解即可.【详解】解:如图所示,∵甲船从港口出发,以80的速度向东行驶,∴MA=80×2=160(km),∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,∴MB=80×1.5=120(km),∴(km),∴上午8:00时,甲、乙两船相距200km.【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.20、见解析;【解析】
(1)根据两角对应相等两个三角形相似即可得证.(2)根据点E是AC的中点,设AE=x,根据相似三角形的性质可知,从而列出方程解出x的值.【详解】证明:.由知点是的中点,设,解得(不和题意舍去).【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.21、(1)甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个;(2)这所学校最多购买2个乙种品牌的足球.【解析】
(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据数量=总价÷单价结合用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设这所学校购买m个乙种品牌的足球,则购买(25-m)个甲种品牌的足球,根据总价=单价×数量结合总费用不超过1610元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据题意得:,解得:x=50,经检验,x=50是所列分式方程的解,且符合题意,∴x+30=1.答:甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个.(2)设这所学校购买m个乙种品牌的足球,则购买(25–m)个甲种品牌的足球,根据题意得:1m+50(25–m)≤1610,解得:m≤2.答:这所学校最多购买2个乙种品牌的足球.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1)600;(2);(3)67.2分【解析】
(1)共抽取学生252÷42%=600(名);(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°;(3)估计禁毒知识竞赛平均分:×(288×80+252×60+48×40+12×20)=67.2.【详解】解:(1)252÷42%=600(名),故答案为600;(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°,故答案为7.2°;(3)×(288×80+252×60+48×40+12×20)=67.2,答:估计禁毒知识竞赛平均分为67.2分.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)ab=1,a+b=2;(2)1.【解析】
(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.【详解】(1)∵∴(2)=1.【点睛】此题主要考查了分母有理化,正确得出有理化因式是解题关键.24、(1)2.5、5、7.5、10、12、14、16、18;(2)【解析】
(1)根据题意可以将表格中的数据补充完整;(2)根据题意和表格中的数据可以写出相应的函数解析式和画出相应的函数图象.【详解】解:(1)设购买种子为xkg,付款金额为y元,当x=0.5时,y=5×0.5=2.5,当x=1时,y=5×1=5,当x=1.5时,y=5×1.5=7.5,当x=2时,y=5×2=10,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子版房产抵押借款合同2篇
- 新解读《GB-T 32606-2016文具用品中游离甲醛的测定方法 乙酰丙酮分光光度法》
- 酒店住房结算合同范本
- 小区车位交易合同范本
- 国内的生产合同范本
- 购房合同范本文案
- 外委项目研发合同范本
- 地板委托加工合同范本
- 花店双方合作合同范本
- 养鸡户合同范本
- 中国鱼腥草素钠栓行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 幼儿园采购协议书范本
- 酱油制作小作坊管理制度
- 胆道疾病的检查与护理
- 1.1《沁园春·长沙》课件中职语文高一(高教版2023基础上册)
- 防火板安装协议书
- 2025年电动港机装卸机械司机(高级技师)职业技能鉴定理论考试题库(含答案)
- 股权代持协议英文版10篇
- 2024年会计法规综合考查试题及答案
- GA 1812.2-2024银行系统反恐怖防范要求第2部分:数据中心
- 鉴定机构运营管理制度
评论
0/150
提交评论