广东省东莞市虎门外国语学校2023年数学八年级第二学期期末复习检测试题含解析_第1页
广东省东莞市虎门外国语学校2023年数学八年级第二学期期末复习检测试题含解析_第2页
广东省东莞市虎门外国语学校2023年数学八年级第二学期期末复习检测试题含解析_第3页
广东省东莞市虎门外国语学校2023年数学八年级第二学期期末复习检测试题含解析_第4页
广东省东莞市虎门外国语学校2023年数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>22.关于的一元二次方程有实数根,则的取值范围是()A. B.C.且 D.且3.下列调查中,不适合普查但适合抽样调查的是()A.调查年级一班男女学生比例 B.检查某书稿中的错别字C.调查夏季冷饮市场上冰淇凌的质量 D.调查载人航天飞船零件部分的质量4.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-5.若分式的值为0,则x的值等于A.0 B.3 C. D.6.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)7.若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A.2 B.4 C.4 D.88.9的算术平方根是()A. B. C. D.9.一次信息技术模拟测试后,数学兴趣小组的同学随机统计了九年级20名学生的成绩记录如下:有5人得10分,6人得9分,5人得8分,4人得7分这20名学生成绩的中位数和众数分别是A.10分,9分 B.9分,10分 C.9分,9分 D.分,9分10.利用函数y=ax+b的图象解得ax+b<0的解集是x<-2,则y=ax+b的图象是()A. B. C. D.二、填空题(每小题3分,共24分)11.分解因式:=.12.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____.13.如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.14.二次根式中字母a的取值范围是______.15.如图,在平行四边形中,,.以点为圆心,适当长为半径画弧,交于点,交于点,再分别以点,为圆心,大于的长为半径画弧,两弧相交于点,射线交的延长线于点,则的长是____________.16.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.17.从甲、乙两班分别任抽30名学生进行英语口语测验,两个班测试成绩的方差是,,则_________班学生的成绩比较整齐.18.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为cm.三、解答题(共66分)19.(10分)某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:)170~174175~179180~184185~189甲车间1342乙车间0622(1)分别计算甲、乙两车间生产的零件直径的平均数;(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?(3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?20.(6分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?21.(6分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.22.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.(2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.23.(8分)已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.24.(8分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?25.(10分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.26.(10分)在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF;②请判断△AGC的形状,并说明理由.(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)

参考答案一、选择题(每小题3分,共30分)1、A【解析】由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.【考点】本题考查函数自变量的取值范围.2、D【解析】

由方程是一元二次方程可得:,由方程有实数根列不等式得的范围,综合得到答案【详解】解:因为一元二次方程有实数根,所以:且,解得:且.故选D.【点睛】本题考查的是一元二次方程的根的情况,考查的是对根的判别式的理解,掌握一元二次方程根的判别式是解题关键.3、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.【详解】A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.故选C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、B【解析】

根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.5、C【解析】

直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.【详解】分式的值为0,,,解得:,故选C.【点睛】本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.6、D【解析】

直接利用关于x,y轴对称点的性质分别得出答案.【详解】∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).故选D.【点睛】本题考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题的关键.7、C【解析】设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.解;设等腰直角三角形的边长为x,

x2=8,

x=1或x=-1(舍去).

所以它的直角边长为1.

故选C.“点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.8、C【解析】

根据算术平方根的定义:正数的平方根有两个,它们为相反数,其中非负的平方根,就是这个数的算术平方根。.【详解】解:∵12=9,

∴9的算术平方根是1.

故选:C.【点睛】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.9、C【解析】

根据中位数和众数的定义进行分析.【详解】20名学生的成绩中第10,11个数的平均数是9,所以中位数是9,9分出现次数最多,所以众数是9.故选:C【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的定义.10、C【解析】

根据一次函数与一元一次不等式得到当x<-2时,直线y=ax+b的图象在x轴下方,然后对各选项分别进行判断.【详解】解:∵不等式ax+b<0的解集是x<-2,

∴当x<-2时,函数y=ax+b的函数值为负数,即直线y=ax+b的图象在x轴下方.

故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(每小题3分,共24分)11、.【解析】试题分析:原式=.故答案为.考点:因式分解-运用公式法.12、(x+2)(x-1)=0【解析】根据因式分解法解一元二次方程的方法,可得方程为(x+2)(x-1)=0.13、【解析】

根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.【详解】解:设AB=x米,由题意可列方程为:x(30-3x)=1.故答案为:x(30-3x)=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.14、.【解析】

运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.【详解】解:由题意得2a+5≥0,解得:.故答案为.【点睛】本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.15、3【解析】

根据角平分线的作图和平行四边形的性质以及等腰三角形的判定和性质解答即可.【详解】由作图可知:BH是∠ABC的角平分线,

∴∠ABG=∠GBC,

∵平行四边形ABCD,

∴AD∥BC,

∴∠AGB=∠GBC,

∴∠ABG=∠AGB,

∴AG=AB=4,

∴GD=AD=AG=7-4=3,

∵平行四边形ABCD,

∴AB∥CD,

∴∠H=∠ABH=∠AGB,

∵∠AGB=∠HGD,

∴∠H=∠HGD,

∴DH=GD=3,

故答案为:3.【点睛】此题考查角平分线的做法,平行四边形的性质,熟练根据角平分线的性质得出∠ABG=∠GBC是解题关键.16、20%【解析】

设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.【详解】设平均每次降价的百分率为x,根据题意列方程得250×(1-x)2=160,解得x1=0.2,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%,故答案为:20%.【点睛】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.17、乙【解析】

根据方差的性质即可求解.【详解】∵,,则>,∴乙班学生的成绩比较稳定.故填乙【点睛】此题主要考查方差的性质,解题的关键是熟知数据的稳定性.18、.【解析】试题分析:首先根据菱形的对角线互相垂直平分,再利用勾股定理,求出BC的长是多少;然后再结合△ABC的面积的求法,求出菱形ABCD的高AE是多少即可.解:∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO=BD=×8=4(cm),CO=AC=×6=3(cm),在△BCO中,由勾股定理,可得BC===5(cm)∵AE⊥BC,∴AE•BC=AC•BO,∴AE===(cm),即菱形ABCD的高AE为cm.故答案为.三、解答题(共66分)19、(1),;(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内;(3)乙车间的合格率高【解析】

(1)根据加权平均数的计算公式直接计算即可;(2)根据中位数、众数的定义得出答案;(3)分别计算两车间的合格率比较即可得出答案。【详解】解:(1)(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内(3)甲车间合格率:;乙车间合格率:;乙车间的合格率高【点睛】本题考查了数据的分析,考查了加权平均数、中位数、众数等统计量,理解并掌握常用的统计量的定义是解题的关键。20、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.【解析】

(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;

(2)设购买电饭煲a台,则购买电压锅(50-a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;

(3)结合(2)中的数据进行计算.【详解】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得

解得

所以,20×(10-200)+10×(200-160)=1400(元).

答:橱具店在该买卖中赚了1400元;

(2)设购买电饭煲a台,则购买电压锅(50-a)台,依题意得

解得

22≤a≤1.

又∵a为正整数,∴a可取23,24,1.

故有三种方案:①防购买电饭煲23台,则购买电压锅27台;

②购买电饭煲24台,则购买电压锅26台;

③购买电饭煲1台,则购买电压锅1台.

(3)设橱具店赚钱数额为W元,

当a=23时,W=23×(10-200)+27×(200-160)=2230;

当a=24时,W=24×(10-200)+26×(200-160)=2240;

当a=1时,W=1×(10-200)+1×(200-160)=210;

综上所述,当a=1时,W最大,此时购进电饭煲、电压锅各1台.【点睛】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.21、(1)y=20―3x;(2)三种方案,即:方案一:甲种3辆乙种11辆丙种6辆方案二:甲种4辆乙种8辆丙种8辆方案三:甲种5辆乙种5辆丙种10辆(3)方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。【解析】

(1)由8x+6y+5(20-x-y)=120得y=20-3x(2)由得3≤x≤且x为正整数,故3,4,5车辆安排有三种方案:方案一:甲种车3辆;乙种车11辆;丙种车6辆;方案二:甲种车4辆;乙种车8辆;丙种车8辆;方案三:甲种车5辆;乙种车5辆;丙种车10辆;(3)设此次销售利润为w元.w=8x×12+6(20-x)×16+5[20-x-(20-3x)]×10=1920-92xw随x的增大而减小,由(2):x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元22、(1)20,25,图详见解析;(2)众数:1.65m,中位数1.60m,平均数1.61m;(3)能.【解析】

(1)用整体1减去其他百分比,即可求出a的值,用已知人数除以所占百分比即可求解.(2)根据平均数,众数和中位数的定义分别进行求解.(3)根据中位数的意义可直接判断出能否进入复赛.【详解】(1),(2)平均数;在这组数据样本中,1.65出现了6次,出现次数最多,故众数为1.65;将这组样本数据从小到大的顺序排列,其中处于中间的两个数都为1.60,所以中位数为.(3)能.【点睛】本题主要考查数据的处理、数据的分析以及统计图表,熟悉掌握是关键.23、(1)A(0,3),B(0,-1);(2)点C的坐标为(-1,1);(3)S△ABC=2.【解析】

(1)利用待定系数法即可解决问题;(2)构建方程组确定交点坐标即可;(3)过点C作CD⊥AB交y轴于点D,根据S△ABC=AB•CD计算即可.【详解】(1)在y=2x+3中,当x=0时,y=3,即A(0,3);在y=-2x-1中,当x=0时,y=-1,即B(0,-1);(2)依题意,得,解得;∴点C的坐标为(-1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3-(-1)=4;∴S△ABC=AB•CD=×4×1=2.【点睛】本题考查两条直线平行或相交问题、三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.24、(1)1元(2)2元【解析】

(1)设第一次每个笔记本的进价为x元,然后根据第二次又用100元购进该种型号的笔记本数量比第一次少20个列方程求解即可;(2)设每个笔记本售价为y元,然后根据全部销售完毕后后获利不低于160元列不等式求解即可.【详解】解:(1)设第一次每个笔记本的进价为x元.依据题可得,解这个方程得:x=1.经检验,x=1是原方程的解.故第一次每个笔记本的进价为1元.(2)设每个笔记本售价为y元.根据题意得:,解得:y≥2.所以每个笔记本得最低售价是2元.【点睛】本题主要考查的是分式方程和一元一次不等式的应用,找出题目的相等关系和不等关系是解题的关键.25、(1)见详解;(2)【解析】

(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.【详解】(1)证明:∵AE∥BC,DE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,∴AD=.∴四边形AEBD的周长=.【点睛】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.26、(1)①证明见解析;②△AGC是等腰直角三角形.证明见解析;(2)△AGC是等边三角形.【解析】

(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;

②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;

(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论