




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分2.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.3.如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC4.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是()L.A.5 B.3.75 C.4 D.2.55.已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为(
)A.0个 B.1个 C.2个 D.无数个6.一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定7.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°8.已知一次函数y=2x+b,其中b<0,函数图象可能是()A.A B.B C.C D.D9.在下列条件中,不能确定四边形ABCD为平行四边形的是().A.∠A=∠C,∠B=∠D B.∠A+∠B=180°,∠C+∠D=180°C.∠A+∠B=180°,∠B+∠C=180° D.∠A=∠B=∠C=90°10.已知|a+1|+=0,则b﹣1=()A.﹣1 B.﹣2 C.0 D.111.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A22OB22.则点B22的坐标()A.(222,-222) B.(22016,-22016) C.(222,222) D.(22016,22016)12.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是3二、填空题(每题4分,共24分)13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.14.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是_____.15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.16.一个纳米粒子的直径是0.000000035米,用科学记数法表示为______米.17.已知1<x<5,化简+|x-5|=____.18.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)△BEC是否为等腰三角形?证明你的结论;(2)若AB=2,∠DCE=22.5°,求BC长.20.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.21.(8分)如图,在中,,是中线,是的中点,过点作交的延长线于,连接.求证:四边形是菱形.22.(10分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)23.(10分)一次期中考试中,甲、乙、丙、丁、戍五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)甲乙丙丁戍平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择.标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问甲同学在本次考试中,数学与英语哪个学科考得更好?24.(10分)化简:(1)2ab﹣a2+(a﹣b)2(2)25.(12分)在直角坐标系中,反比例函数y=(x>0),过点A(3,4).(1)求y关于x的函数表达式.(2)求当y≥2时,自变量x的取值范围.(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.26.已知:如图,是的角平分线,于点,于点,,求证:是的中垂线.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.2、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、C【解析】
是等边三角形,延长交于,连接交于,连接,由题意、关于对称,推出,当、、共线时,的值最小,最小值为的长.【详解】如图,由题意,,是等边三角形,延长交于,连接交于,连接,由题意、关于对称,,当、、共线时,的值最小,最小值为的长,设,,在中,,,,在中,,,,.故选:.【点睛】本题考查轴对称-最短问题,翻折变换,矩形的性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.4、B【解析】
观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.【详解】每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).故选B.【点睛】本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.5、A【解析】
图象可知,一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,所以关于x与y的二元一次方程组无解.【详解】∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,∴关于x与y的二元一次方程组无解.故选A.【点睛】本题考查了一次函数与二元一次方程(组),方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.6、C【解析】
由△=b2-4ac的情况进行分析.【详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C【点睛】本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.7、D【解析】
根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A.B选项正确;在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.8、A【解析】对照该函数解析式与一次函数的一般形式y=kx+b(k,b为常数,k≠0)可知,k=2.故k>0,b<0.A选项:由图象知,k>0,b<0,符合题意.故A选项正确.B选项:由图象知,k<0,b<0,不符合题意.故B选项错误.C选项:由图象知,k>0,b>0,不符合题意.故C选项错误.D选项:由图象知,k<0,b>0,不符合题意.故D选项错误.故本题应选A.点睛:本题考查了一次函数的图象与性质.一次函数解析式的系数与其图象所经过象限的关系是重点内容,要熟练掌握.当k>0,b>0时,一次函数的图象经过一、二、三象限;当k>0,b<0时,一次函数的图象经过一、三、四象限;当k<0,b>0时,一次函数的图象经过一、二、四象限;当k<0,b<0时,一次函数的图象经过二、三、四象限.9、B【解析】
根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.【详解】A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;故选B.10、B【解析】
根据非负数的性质求出a、b的值,然后计算即可.【详解】解:∵|a+1|+=0,∴a+1=0,a-b=0,解得:a=b=-1,∴b-1=-1-1=-1.故选:B.【点睛】本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.11、A【解析】∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),∵22÷4=504…1,∴点B22与B1同在第四象限,∵﹣4=﹣22,8=23,16=24,∴点B22(222,-222),故选A.【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.12、A【解析】A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确B.买了100张奖券可能中奖且中奖的可能性很小,故错误C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38故选A二、填空题(每题4分,共24分)13、x=1【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为:x=1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14、3【解析】
在y=﹣x+3中,令x=0则y=3,令y=0,则x=3,∴OA=3,OB=3,∴由题意可知,点C在∠AOB的平分线上,∴m+1=7﹣m,解得:m=3.故答案为3.15、144【解析】
连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,∴点E在量角器上对应的读数是:144°,故答案为144.16、3.5×10-1.【解析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000
000
035=3.5×10-1.
故答案为:3.5×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.17、4【解析】【分析】由已知判断x-1>0,x-5<0,再求绝对值.【详解】因为1<x<5,+|x-5|=|x-1|+|x-5|=x-1+5-x=4故答案为:4【点睛】本题考核知识点:二次根式化简.解题关键点:求绝对值.18、18【解析】
如图,连接CD,与MN交于点E,根据折叠的性质可知CD⊥MN,CE=DE.再根据相似三角形的判定可知△MNC∽△ABC,再根据相似三角形的面积之比等于相似比的平方.由图可知四边形ABNM的面积等于△ABC的面积减去△MNC的面积.【详解】解:连接CD,交MN于点E.∵△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,∴CD⊥MN,CE=DE.∵MN∥AB,∴△MNC∽△ABC,CD⊥AB,∴===4.∵=MCCN=62=6,∴=24,∴四边形ACNM=-=24-6=18故答案是18.【点睛】本题考查了折叠的性质、相似三角形的性质和判定,根据题意正确作出辅助线是解题的关键.三、解答题(共78分)19、(1)△BEC是等腰三角形,见解析;(2)2【解析】
(1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.【详解】解:(1)△BEC是等腰三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°-22.5°)=135°,∴∠AEB=180°-∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=2,由勾股定理得:BC=BE===2,答:BC的长是2.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.20、(1)1:3;(1)见解析;(3)5:3:1.【解析】
(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.21、见解析.【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,再通过直角三角形斜边上的中线等于斜边的一半,证明AD=DC,从而证明ADCF是菱形..【详解】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);∴AF=DB.∵AD是BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90∘,AD是BC边上的中线,∴AD=DC=BC,∴ADCF是菱形.【点睛】本题考查菱形的判定,直角三角形斜边上的中线.读题根据已知题意分析图中线段、角之间的关系,从而选择合适的定理去证明四边形ADCE为菱形.22、(1)答案见解析;(2)答案见解析【解析】试题分析:(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.试题解析:(1)如图①:.(2)如图②,.考点:平行四边形的性质23、(1)70,6;(2)从标准分来看,甲同学数学比英语考得更好.【解析】
(1)由平均数、标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经典与现代2025年网络规划设计师考试试题及答案
- 卫生单位招聘试题及答案
- MS Office模拟题与真题练习试题及答案
- 中考化学试题真题及答案
- 中职病理考试题库及答案
- 系统集成考试注意事项试题及答案
- 电力营销考试题及答案
- 网络规划设计师考试自我评估工具及试题及答案
- 重要考核点与试题及答案解析
- Msoffice难题克服策略与答案
- 2025年临床带教老师心得感想(7篇)
- 课题申报参考:数智时代大学生网络社会心态形成发展规律及引导策略研究
- 船舶与海洋工程原理(上)知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 《核电厂实物保护系统定期试验规范》
- 江苏卷2024年高考语文第一次模拟考试一(原卷版+解析版)
- 甘肃开放大学2024年《信息技术与信息管理》形考作业1-4答案
- 【MOOC】应用光学实验-浙江大学 中国大学慕课MOOC答案
- 【MOOC】台湾历史与文化-福建师范大学 中国大学慕课MOOC答案
- 转体施工案例
- 深圳2020-2024年中考英语真题复习专题01 语法填空(解析版)
- JJF(津) 139-2024 电动汽车公用充电设施统计抽样计量性能评价技术规范
评论
0/150
提交评论