




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,对角线与交于点,添加下列条件不能判定为矩形的只有()A. B.,,C. D.2.在中,,,,则的长为()A.3 B.2 C. D.43.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.4.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.1,4,3.1,1,1,3.1.这组数据的众数是()A.3 B.3.1 C.4 D.15.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)
5
6
7
8
人数(人)
3
15
22
10
表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是27.下列各等式成立的是()A. B.C. D.8.一次函数y=2x+1的图象沿y轴向上平移3个单位,所得图象的函数解析式为()A.y=2x+4 B.y=2x-4 C.y=2x﹣2 D.y=2x+79.已知A(x1,y1),B(x2,y2)是一次函数y=(2a﹣1)x﹣3图象上的两点,当x1<x2时,有y1>y2,则a的取值范围是()A.a<2 B.a> C.a>2 D.a<10.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.3,4,5 B.1,2,3 C.5,7,9 D.6,10,1211.某射击运动员在一次射击训练中,共射击了次,所得成绩(单位:环)为、、、、、,这组数据的中位数为()A. B. C. D.12.如图,正方形ABCD中,点E在BD上,且,延长CE交AD于F,则为()A. B. C. D.二、填空题(每题4分,共24分)13.在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。14.用反证法证明:“四边形中至少有一个角是直角或钝角”时,应假设________.15.如图,平行四边形中,的平分线交于点,的平分线交于点,则的长为________.16.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.17.若代数式的值等于0,则x=_____.18.如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.三、解答题(共78分)19.(8分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,并说明理由;(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?20.(8分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(-2,2),D(1,2),E(1,0),F(-2,0).(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.21.(8分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).(1)求此直线和双曲线的表达式;(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.22.(10分)如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=1.(1)求反比例函数的解析式;(2)求△APB的面积;(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?23.(10分)如图,已知反比例函数y1=kx的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2(1)求出反比例函数和一次函数的关系式;(2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;(3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.24.(10分)先化简,再求值:.其中a=3+.25.(12分)某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价30人辆400元辆20人辆300元辆注:载客量指的是每辆客车最多可载该校师生的人数.学校租用型号客车辆,租车总费用为元.(1)求与的函数解析式,请直接写出的取值范围;(2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?26.如图,在直角坐标系中,,,是线段上靠近点的三等分点.(1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;(2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据矩形的判定即可求解.【详解】A.,对角线相等,可以判定为矩形B.,,,可知△ABC为直角三角形,故∠ABC=90°,故可以判定为矩形C.,对角线垂直,不能判定为矩形D.,可得AO=BO,故AC=BD,可以判定为矩形故选C.【点睛】此题主要考查矩形的判定,解题的关键是熟知矩形的判定定理.2、D【解析】
根据,可得,再把AB的长代入可以计算出CB的长.【详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.3、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.4、B【解析】试题分析:在这一组数据中3.1出现了3次,次数最多,故众数是3.1.故选B.考点:众数.5、C【解析】
解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点睛】本题考查众数.6、B【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题7、C【解析】
根据分式的基本性质逐一进行判断即可得答案.【详解】A、,故此选项不成立;B、==a+b,故此选项不成立;C、==a+1,故此选项成立;D、==﹣,故此选项不成立;故选:C.【点睛】本题考查了分式的基本性质,分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.8、A【解析】
根据一次函数图象平移的规律即可求得答案.【详解】将一次函数y=2x+1的图象沿y轴向上平移3个单位,所得图象的函数解析式为:y=2x+1+3,即y=2x+4,故选A.【点睛】本题考查一次函数图象与几何变换,根据已知直线的解析式求得平移后的解析式,熟练掌握直线平移时解析式的变化规律是解题的关键.沿y轴上下平移时,上移加下移减.9、D【解析】
根据一次函数的图像即可求解.【详解】解:∵当x1<x2时,有y1>y2∴y随x的增大而减小即2a﹣1<0∴a<故选:D.【点睛】此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.10、A【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A.因为3+4=5,所以三条线段能组成直角三角形;B.因为1+2≠3,所以三条线段不能组成直角三角形;C.因为5+7≠9,所以三条线段不能组成直角三角形;D.因为6+10≠12,所以三条线段不能组成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,难度不大11、B【解析】
先将题目中的数据按从小到大的顺序排列,然后根据中位数的定义分析即可.【详解】将题目中的数据按从小到大的顺序排列:6,7,7,8,8,9;中间数字为7和8;中位数为故选B【点睛】本题考查中位数的运算,注意要先将数据按从小到大的顺序排列,再根据中位数的定义分析求解.12、B【解析】
先根据正方形的性质得出,再根据等腰三角形的性质、三角形的内角和定理可得,然后根据平行线的性质即可得.【详解】四边形ABCD是正方形,即解得故选:B.【点睛】本题考查了正方形的性质、等腰三角形的性质、平行线的性质等知识点,掌握正方形的性质是解题关键.二、填空题(每题4分,共24分)13、8或4【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.【详解】解:∵AD=9,AE:ED=1:2,∴AE=3,ED=6,又∵EF=2>AB,分情况讨论:如下图:当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,CF=GD=ED+GE,在RT三角形GFE中,GE==2,则此时CF=6+2=8;如下图:当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,则此时CF=6-2=4;综上,CF的长为8或4.【点睛】本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.14、四边形中所有内角都是锐角.【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故答案为:四边形中所有内角都是锐角.【点睛】本题考查了反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15、1【解析】
由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG,进而求出EG的长.【详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,
∴∠GBC=∠BGA,∠BCE=∠CED,
又∵BG平分∠ABC,CE平分∠BCD,
∴∠ABG=∠GBC,∠BCE=∠ECD,
∴∠ABG=∠AGB,∠ECD=∠CED.
∴AB=AG,CD=DE,
∴AG=DE,
∴AG-EG=DE-EG,
即AE=DG,
∵AB=5,AD=6,
∴AG=5,DG=AE=1,
∴EG=1,
故答案为1.【点睛】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.16、8米.【解析】
在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB1=AC1+BC1.∵AB=10米,AC=6米,∴BC8米,即梯子的底端到墙的底端的距离为8米.故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.17、2【解析】
由分式的值为零的条件得x2-5x+6=0,2x-6≠0,由x2-5x+6=0,得x=2或x=3,由2x-6≠0,得x≠3,∴x=2.18、1.【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.【详解】解:由折叠可得,EF=AE,BF=AB.∵△FDE的周长为8,△FCB的周长为22,∴DF+AD=8,FC+CB+AB=22,∴平行四边形ABCD的周长=8+22=30,∴AB+BC=BF+BC=15,又∵△FCB的周长=FC+CB+BF=22,∴CF=22-15=1,故答案为:1.【点睛】本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题(共78分)19、(1)村庄能听到宣传.理由见解析;(2)村庄总共能听到4分钟的宣传.【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响【详解】解:(1)村庄能听到宣传.理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答则AP=AQ=1000米,AB=800米.∴BP=BQ==600米.∴PQ=1200米.、∴影响村庄的时间为:1200÷300=4(分钟).∴村庄总共能听到4分钟的宣传.【点睛】此题考查解直角三角形,利用勾股定理进行计算是解题关键20、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【解析】
(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
(1)画出图形,观察图形可得出结论;(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.【详解】解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.
∵点C的坐标为(-1,1),点D的坐标为(1,1),
∴点C′的坐标为(-1,1),点D′的坐标为(,1),∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,∴点,,中,在图形G上的点是,;(1)点A和四边形CDEF的“中点形”是四边形.各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).(3)∵点B的横坐标为b,
∴点B的坐标为(b,1b).
当点B和四边形CDEF的中间点在边EF上时,有,
解得:-1≤b≤0;
当点B和四边形CDEF的中间点在边DE上时,有,
解得:1≤b≤1,
综上所述:点B的横坐标b的取值范围为-1≤b≤0或1≤b≤1.故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【点睛】本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.21、(1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).【解析】
(1)利用待定系数法即可解决问题;
(2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.【详解】(1)∵y=2x+m与(n≠0)交于A(1,4),∴,∴,∴直线的解析式为y=2x+2,反比例函数的解析式为.(2)设M(a,0),∵l∥y轴,∴P(a,2a+2),Q(a,),∵PQ=2QM,∴|2a+2﹣|=|2×|,解得:a=2或a=﹣3,∴M(﹣3,0)或(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22、(1);(2)16;(3)0<x<2.【解析】
(1)由OB,PB的长,及P在第一象限,确定出P的坐标,由P在反比例函数图象上,将P的坐标代入反比例解析式中,即可求出k的值;(2)根据待定系数法求得直线AC的解析式,令y=0求出对应x的值,即为A的横坐标,确定出A的坐标,即可求得AB,然后根据三角形的面积公式求解即可;(3)由一次函数与反比例函数的交点P的横坐标为2,根据图象找出一次函数在反比例函数下方时x的范围即可.【详解】(1)∵OB=2,PB=1,且P在第一象限,∴P(2,1),由P在反比例函数y=上,故将x=2,y=1代入反比例函数解析式得:1=,即k=8,所以反比例函数解析式为:;(2)∵P(2,1)在直线y=x+b上,∴1=×2+b,解得b=3,∴直线y=x+3,令y=0,解得:x=﹣6;∴A(﹣6,0),∴OA=6,∴AB=8,∴S△APB=AB•PB=×8×1=16;(3)由图象及P的横坐标为2,可知:在第一象限内,一次函数的值小于反比例函数的值时x的范围为0<x<2.【点睛】本题考查了反比例函数与一次函数的交点,涉及了待定系数法,一次函数与坐标轴的交点,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做第三问时注意灵活运用.23、(1)反比例函数的解析式为y1=4x,一次函数的解析式为y1=1x+1;(1)﹣1<x<0或x>1;(3)C的坐标(1,0)或(﹣3,0【解析】
(1)根据待定系数法,可得函数解析式;(1)根据一次函数图象在上方的部分是不等式的解,可得答案;(3)根据面积的和差,可得答案.【详解】(1)∵函数y1=kx的图象过点A(1,4),即4=k∴k=4,即y1=4x又∵点B(m,﹣1)在y1=4x∴m=﹣1,∴B(﹣1,﹣1),又∵一次函数y1=ax+b过A、B两点,即-2a+b=-2a+b=4解之得a=2b=2∴y1=1x+1.反比例函数的解析式为y1=4x一次函数的解析式为y1=1x+1;(1)要使y1<y1,即函数y1的图象总在函数y1的图象下方,∴﹣1<x<0或x>1;(3)如图,直线AB与x轴交点E的坐标(﹣1,0),∴S△ABC=S△AEC+S△BEC=12EC×4+12EC×1=∴EC=1,-1+1=1,-1-1=-3,∴C的坐标(1,0)或(﹣3,0).【点睛】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,函数与不等式的关系.24、a﹣3,【解析】
根据题意对原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.【详解】解:=﹣•=2(a﹣1)﹣(a+1)=2a﹣2﹣a﹣1=a﹣3,当a=3+时,原式=3+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门诊急救室管理制度
- 阀门工公司管理制度
- 非在岗定位管理制度
- 食堂18项管理制度
- 黄金店安全管理制度
- 长春医学高等专科学校《行为经济学》2023-2024学年第二学期期末试卷
- 湖南外贸职业学院《国际贸易理论与实务》2023-2024学年第二学期期末试卷
- 江西水利职业学院《染织工艺基础》2023-2024学年第二学期期末试卷
- 湖北中医药大学《经济数学-线性代数》2023-2024学年第二学期期末试卷
- 宁夏大学新华学院《工程项目管理与法规》2023-2024学年第二学期期末试卷
- 四川省成都市温江县2023-2024学年八下物理期末监测试题及答案解析
- 内科学(肾脏-内分泌-血液)智慧树知到期末考试答案章节答案2024年温州医科大学
- 食品安全与日常饮食智慧树知到期末考试答案章节答案2024年中国农业大学
- 100以内进退位加减法口算题每天60道
- 基础护理学第七版题附有答案
- MOOC 嵌入式软件设计-大连理工大学 中国大学慕课答案
- 永久基本农田储备区划定技术方案
- 医疗销售经验技巧分享
- 大气组成与垂直分层(简洁版)
- 钢铁企业环保培训课件
- 静脉留置针输液并发症课件
评论
0/150
提交评论