




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.262.如图,△ABC中,AB=6,AC=4,AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE为()A.8.5 B.8 C.7.5 D.53.在□中,,则的度数为(
)A. B. C. D.4.下列说法正确的是()A.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.B.为了解全国中学生的睡眠情况,应该采用普查的方式.C.若甲数据的方差s甲2=0.01,乙数据的方差s乙2=0.1,则乙数据比甲数据稳定.D.一组数据3,1,4,1,1,6,10的众数和中位数都是1.5.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的()A.众数 B.平均数 C.频数 D.方差6.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小7.如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120° B.110° C.115° D.100°8.下列不能判断是正方形的有()A.对角线互相垂直的矩形 B.对角线相等的矩形C.对角线互相垂直且相等的平行四边形 D.对角线相等的菱形9.已知32m=8n,则m、n满足的关系正确的是()A.4m=n B.5m=3n C.3m=5n D.m=4n10.一元二次方程x2+3x=0的解是(A.x=0 B.x=-3C.x1=0,二、填空题(每小题3分,共24分)11.计算______.12.如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.13.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示,根据这个图象求出y与t之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是_____.14.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.15.如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.16.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.17.用换元法解方程3x22x+1-2x+1x2=1时,如果设x22x+1=18.如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.三、解答题(共66分)19.(10分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.20.(6分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.21.(6分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.22.(8分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.(1)如图1,求证:四边形是菱形;(2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形23.(8分)(1)解不等式组:(2)解方程:.24.(8分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.25.(10分)如图,在中,,、分别是、的中点,连接,过作交的延长线于.(1)证明:四边形是平行四边形;(2)若四边形的周长是,的长为,求线段的长度.26.(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.2、D【解析】
延长BA、CD交于F,根据等腰三角形的判定定理和性质定理得到AF=AC,CD=DF,根据三角形中位线定理得到答案.【详解】延长BA、CD交于F,∵AD是∠BAC的外角平分线,CD⊥AD,∴AF=AC,CD=DF,∴BF=BA+AF=BA+AC=10,∵CD=DF,点E是BC的中点,∴ED=12BF=5故选:D.【点睛】此题考查三角形中位线定理,等腰三角形的判定与性质,解题关键在于作辅助线3、B【解析】
依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=216°,∴∠B=108°.∴∠A=180°﹣108°=72°.故选:B.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.4、D【解析】A选项:某种彩票的中奖机会是1%,则买100张这种彩票中奖的可能性很大,但不是一定中奖,故本选项错误;
B选项:为了解全国中学生的睡眠情况,应该采用抽样调查的方式,故本选项错误;C选项:方差反映了一组数据的波动情况,方差越小数据越稳定,故本选项错误;
D选项:一组数据3,1,4,1,1,6,10的众数和中位数都是1,故本选项正确;
故选D.5、D【解析】
根据只有方差是反映数据的波动大小的量,由此即可解答.【详解】众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.所以为了判断成绩是否稳定,需要知道的是方差.故选D.【点睛】本题考查统计学的相关知识.注意:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数;方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解析】根据一次函数y=-2x+4的系数k=-2<0,b>0,所以函数的图像不经过第三象限,y随x增大而减小,函数的图像与y轴的交点为(0,4),根据一次函数的平移,可知向下平移4个单位得y=-2x的图像.故选:B.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.7、A【解析】
根据多边形的外角和求出∠5的度数,然后根据邻补角的和等于180°列式求解即可.详【详解】解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.故选A.【点睛】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.8、B【解析】
根据正方形的判定逐项判断即可.【详解】A、对角线互相垂直的矩形是正方形,此项不符题意B、对角线相等的矩形不一定是正方形,此项符合题意C、对角线互相垂直且相等的平行四边形是正方形,此项不符题意D、对角线相等的菱形是正方形,此项不符题意故选:B.【点睛】本题考查了正方形的判定,熟记正方形的判定方法是解题关键.9、B【解析】∵32m=8n,
∴(25)m=(23)n,
∴25m=23n,
∴5m=3n.
故选B.10、D【解析】
用因式分解法求解即可.【详解】解:x2+1x=0,x(x+1)=0,所以x=0或x+1=0,解得:x1=0,x2=-1.故选:D.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择恰当的方法是解决此题的关键.二、填空题(每小题3分,共24分)11、【解析】
先进行二次根式的化简,然后合并.【详解】解:原式.故答案为:.【点睛】本题考查了二次根式的加减法,正确化简二次根式是解题的关键.12、1【解析】
先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得出旋转角为,最后利用勾股定理的逆定理即可得求出旋转角的度数.【详解】由图可知,点的坐标为,点的坐标为点关于y轴对称y轴垂直平分,即线段的垂直平分线所在直线的解析式为设直线的解析式为将点代入得:,解得则直线的解析式为设垂直平分线所在直线的解析式为的中点坐标为,即将点代入得:,解得则垂直平分线所在直线的解析式为联立,解得则旋转中心的坐标是由此可知,旋转角为是等腰直角三角形,且故答案为:,1.【点睛】本题考查了利用待定系数法求一次函数的解析式、旋转的定义、勾股定理的逆定理等知识点,掌握确定旋转中心的方法是解题关键.13、表示每小时耗油7.5升【解析】
根据图像可知出发时油箱内有油25升,当行驶2小时时剩油10升,可求出每小时耗油量为7.5升.所以﹣7.5表示表示每小时耗油7.5升.【详解】由图象可知,t=0时,y=25,所以汽车出发时油箱原有油25,又经过2小时,汽车油箱剩余油量10升,即2小时耗油25-10=15升,15÷2=7.5升,故答案为:表示每小时耗油7.5升【点睛】本题考查一次函数的定义,熟练掌握一次函数的定义与性质是解题关键.14、(1,1)(-1,-1).【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对角线交点D的坐标为(-1,-1),故答案为:(1,1);(-1,-1)【点睛】本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.15、1【解析】
利用直角三角形30度角的性质,可得AC=2AD=1.【详解】解:在矩形ABCD中,OC=OD,∴∠OCD=∠ODC,∵∠AOD=60°,∴∠OCD=∠AOD=×60°=30°,又∵∠ADC=90°,∴AC=2AD=2×2=1.故答案为1.【点睛】本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键16、【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】∵四边形CDEF是正方形,AC=5,BC=12,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,解得:x=,故答案为.【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.17、3y2-y-1=0【解析】
将分式方程中3x22x+1换成3y,【详解】解:根据题意,得:3y-1y去分母,得:3y2-1=y,整理,得:3y2-y-1=0.故答案为:3y2-y-1=0.【点睛】本题考查了用换元法解分式方程.18、【解析】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.
∵∠FNC=∠MCN=∠FMC=90°,
∴四边形CMFN是矩形,
∴∠MFN=∠AFE=90°,
∴∠AFN=∠MFE,
∵AF=FE,∠FNA=∠FME=90°,
∴△FNA≌△FME(AAS),
∴FM=FM,AN=EM,
∴四边形CMFN是正方形,
∴CN=CM,CF=CM,∠FCN=∠FCM=45°,
∵AC+CE=CN+AN+CM-EM=2CM,
∴CF=(AC+CE).
∴点F在射线CF上运动(CF是∠ACB的角平分线),
当点E与D重合时,CF=(AC+CD)=2,
当点E与B重合时,CF=(AC+CB)=,
∵-2=,
∴点F的运动的路径长为.
故答案为:.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.三、解答题(共66分)19、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.【解析】
(1)直接把已知点代入函数关系式进而得出m,n的值;(2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;(3)分别得出AO,BO的长,进而得出四边形PAOB的面积.【详解】(1)把P(1,2)代入y=x+n﹣2得:1+n﹣2=2,解得:n=3;把P(1,2)代入y=mx+3得:m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为:x<1;(3)当x=0时,y=x+1=1,故OA=1,当y=0时,y=﹣x+3,解得:x=3,则OB=3,四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.【点睛】此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.20、2.4元/米【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米元,则今年用水价格为每立方米元由题意列方程得:解得经检验,是原方程的解(元/立方米)答:今年居民用水的价格为每立方米元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.21、(1)证明见解析;(2)16.【解析】
(1)已知O是AC的中点,可得AO=CO.又因AD∥BC,根据平行线的性质可得∠DAO=∠BCO,再由∠AOD=∠COB,利用ASA即可判定ΔAOD≅△COB,由全等三角形的性质可得AD=BC,再由一组对边平行且相等的四边形为平行四边形即可判定四边形ABCD是平行四边形;(2)根据对角线互相垂直的平行四边形为菱形判定四边形ABCD为菱形,由此即可求得四边形ABCD的周长.【详解】(1)证明:∵O是AC的中点,∴AO=CO.∵AD∥BC
,∴∠DAO=∠BCO,又∵∠AOD=∠COB,∴ΔAOD≅△COB,∴AD=BC,又∵AD∥BC,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∵AB=4,∴菱形ABCD的周长为16.【点睛】本题考查了平行四边形的判定及菱形的判定与性质,证明ΔAOD≅△COB是解决问题的关键.22、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.【解析】
(1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
(2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.【详解】(1)证明:∵MG∥AD,NF∥AB,
∴四边形AMEN是平行四边形,
∵四边形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB−BM=AD−DN,
∴AM=AN,
∴四边形AMEN是菱形;
(2)解:∵四边形AMEN是菱形,∴ME=NE,∴S△AEM=S△AEN,如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,∴∠MHB=∠NKD=90°∵四边形ABCD是菱形,∴∠B=∠D,∵BM=DN,∴△MHB≌△NKD(AAS),∴MH=NK∴S四边形MBFE=S四边形DNEG,∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.【点睛】此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.23、(1);(2)无解.【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)由①得:,由②得:,则不等式组的解集为;(2)去分母得:,解得:,经检验是增根,分式方程无解.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.24、(1)AC=,QD=;(2)是菱形,理由见解析;(3)DP2+EF2=4QD2,理由见解析;(4)垂直且相等,理由见解析.【解析】
(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.【详解】解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC-PC=;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.25、(1)见解析;(2).【解析】
(1)由三角形中位线定理推知,,然后结合已知条件“”,利用两组对边相互平行得到四边形为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到,即可得出四边形的周长,故,然后根据勾股定理即可求得;【详解】解:(1)、分别是、的中点,是延长线上的一点,是的中位线,.,又,四边形是平行四边形;(2)解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购物中心儿童游乐区运营管理与品牌合作协议
- 纳米药物研发与临床试验伦理审查合作协议
- 高端别墅房产中介独家代理销售协议
- 网络短视频与影视项目联合投资协议
- 全民健身活动赞助合作协议书
- 高清网络直播用监听音箱租赁服务协议
- 粤港澳大湾区跨境合伙企业项目投资信托合同
- 家具出口运输保险及关税豁免合同
- 个性化网络直播虚拟背景定制服务协议
- 水利枢纽安全生产责任保证书
- 2025年山东省应急管理普法知识竞赛参考试题库大全-上(单选题)
- 102解二元一次方程组【10个必考点】(必考点分类集训)(人教版2024)
- 邻水现代农业发展集团有限公司招聘笔试题库2025
- 肿瘤专科进修汇报护理
- 配电房防火安全施工技术措施
- 地铁乘客满意度影响因素组态效应分析:出行链视角研究
- 数学三角形的高、中线、角平分线教案2024-2025学年北师大版(2024)七年级数学下册
- 2021水闸工程运行管理规程
- (高清版)DB51∕T 1292-2011 牧草种质资源田间鉴定与评价技术规程
- 三农项目申请操作流程指南
- 组织行为学(对外经济贸易大学)知到课后答案智慧树章节测试答案2025年春对外经济贸易大学
评论
0/150
提交评论