




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.135° B.180° C.225° D.270°2.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<33.若a≤1,则(1-a)3A.(a-1)a-1 B.(1-a)a-1 C.(a-1)4.如图,这个图案是3世纪我国汉代的赵爽在注释《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以围成一个大正方形,中空的部分是一个小正方形(黄实),赵爽利用弦图证明的定理是()A.勾股定理 B.费马定理 C.祖眇暅 D.韦达定理5.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后.决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(表示乌龟从起点出发所行的时间,表示乌龟所行的路程,表示兔子所行的路程.下列说法中:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处上了乌龟.正确的有:()A.1个 B.2个 C.3个 D.4个6.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.7.如图,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是().A.6 B.5 C.4 D.3.8.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.两直线平行,内错角相等 D.等边三角形是等腰三角形9.如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为()A.22 B.24 C.48 D.4410.若关于x的方程x2-bx+6=0的一根是x=2,则另一根是()A.x=-3 B.x=-2 C.x=2 D.x=311.如图,在中,,AD平分,,,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm12.某车间5月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,1.则在这10天中该车间生产零件的次品数的()A.众数是3 B.中位数是1.5 C.平均数是2 D.以上都不正确二、填空题(每题4分,共24分)13.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___15.将点,向右平移个单位后与点关于轴对称,则点的坐标为______.16.王明在计算一道方差题时写下了如下算式:,则其中的____________.17.已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.18.若关于x的方程无解,则m=.三、解答题(共78分)19.(8分)计算:(1)(2)(3)(4).20.(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.21.(8分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.22.(10分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=(1)求点B的坐标;(2)若△ABC的面积为4,求l223.(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为,EG与CG的位置关系为,请证明你的结论.(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.(3)在图2中,若BC=4,BF=3,连接EC,求的面积.24.(10分)由中宣部建设的“学习强国”学习平台正式上线,这是推动新时代中国特色社会主义思想,推进马克思主义学习型政党和学习型社会建设的创新举措.某校党组织随机抽取了部分党员教师某天的学习成绩进行了整理,分成5个小组(x表示成绩,单位:分,且20x70),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2,第5两组测试成绩人数直方图的高度比为3:1,请结合下列图表中相关数据回答下列问题:(1)填空:a,b;(2)补全频数分布直方图;(3)据统计,该校共有党员教师200人,请你估计每天学习成绩在40分以上(包括40分)的党员教师人数.25.(12分)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.26.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?
参考答案一、选择题(每题4分,共48分)1、C【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.【详解】在△ABC和△AEF中,∴△ABC≌△AEF(SAS)∴∠5=∠BCA∴∠1+∠5=∠1+∠BCA=90°在△ABD和△AEF中∴△ABD≌△AEH(SAS)∴∠4=∠BDA∴∠2+∠4=∠2+∠BDA=90°∵∠3=45°∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°故答案选C.【点睛】本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.2、A【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.故选A考点:一次函数的图像与性质3、D【解析】
将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.【详解】若a≤1,有1﹣a≥0;则(1-a)3=(1-a)2故选D.【点睛】本题考查了二次根式的意义与化简.二次根式a2规律总结:当a≥0时,a2=a;当a≤0时,4、A【解析】
根据图形,用面积法即可判断.【详解】如图,设大正方形的边长为c,四个全等的直角三角形的两个直角边分别为a,b故小正方形的边长为(b-a)∴大正方形的面积为c2=4×化简得【点睛】此题主要考查勾股定理的性质,解题的关键是根据图像利用面积法求解.5、C【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图可得,“龟兔再次赛跑”的路程为1000米,故①正确;乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误;乌龟在途中休息了:40-30=10(分钟),故③正确;当40≤x≤60,设y1=kx+b,由题意得,解得k=20,b=-200,∴y1=20x-200(40≤x≤60).当40≤x≤50,设y2=mx+n,由题意得,解得m=100,n=-4000,∴y2=100x-4000(40≤x≤50).当y1=y2时,兔子追上乌龟,此时20x-200=100x-4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6、C【解析】
求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.7、D【解析】
分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=1,即G的移动路径长为1.故选D.【点睛】本题考查了等边三角形的性质,平行四边形的判定与性质,以及中位线的性质,确定出点G的运动轨迹是解答本题的关键.8、C【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.【详解】A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.故选C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、B【解析】
先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,BO=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=.故答案为:B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.10、D【解析】
把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.【详解】解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,解得:b=5,即方程为x2-5x+6=0,解得:x=2或3,即方程的另一个根是x=3,故选:D.【点睛】此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.11、B【解析】
过点D作DE⊥AB于E,然后根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,再代入数据求出CD,即可得解.【详解】解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD平分∠CAB,
∴DE=CD,
∵BC=12cm,BD=8cm,
∴CD=BC-BD=12-8=4cm,
∴DE=4cm.
故选B.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.12、B【解析】
根据众数、中位数和平均数的定义即可得出答案.【详解】根据题意可得:众数为0和2,中位数为(1+2)÷2=1.5,平均数为(0×3+1×2+2×3+3×2)÷10=1.4,故答案选择B.【点睛】本题考查的数众数、中位数和平均数,比较简单,注意求中位数之前要先对数组进行排序.二、填空题(每题4分,共24分)13、46≤x<1【解析】分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<1.故答案为46≤x<1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.14、y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.15、(4,-3)【解析】
让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.【详解】将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3∴平移后的坐标是(4,3)∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3∴它关于x轴对称的点的坐标是(4,-3)【点睛】此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点16、1.865【解析】
先计算出4个数据的平均数,再计算出方差即可.【详解】∵,∴=====1.865.故答案为:1.865.【点睛】此题主要考查了方差的计算,求出平均数是解决此题的关键.17、0.1【解析】
根据公式:频率=即可求解.【详解】解:11的频数是3,则频率是:=0.1.故答案是:0.1.【点睛】本题考查了频率公式:频率=,理解公式是关键.18、﹣8【解析】
试题分析:∵关于x的方程无解,∴x=5将分式方程去分母得:,将x=5代入得:m=﹣8【详解】请在此输入详解!三、解答题(共78分)19、(1);(2);(3);(4).【解析】
(1)先进行二次根式的乘除运算,然后合并即可;(2)先把各二次根式化简为最简二次根式,然后去括号合并即可;(3)利用平方差公式和完全平方公式计算;(4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.【详解】解:(1)原式;(2)原式;(3)原式;(4)原式.故答案为(1);(2);(3);(4).【点睛】本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20、1.【解析】
先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
∴BC'=AB=3,CF=C'F
在Rt△BC'F中,C'F2=BF2+C'B2,
∴CF2=(9-CF)2+9
∴CF=5
∴BF=1.【点睛】本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.21、(1)AP+PQ的最小值为1;(2)存在,M点坐标为(﹣12,﹣1)或(12,8).【解析】
(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=1,C点坐标为(1,1)DB=∠CEB=90,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=15,同弧所对圆周角相等可知∠CED=15,所以∠OEF=15,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成15可知∠AMN=15,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A点作AK⊥CE,在等腰直角△ABC中,∠ACB=90,AC=BC,∵CE⊥x轴,∴∠ACK+∠ECB=90,∠ECB+∠CBE=90,∴∠ACK=∠CBE在△AKC和△CEB中,,△AKC≌△CEB(AAS)∴AK=CE,CK=BE,∵四边形AOEK是矩形,∴AO=EK=BE,由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B(6,0)∴E点坐标为(1,0),C点坐标为(1,1),∵∠CDB=∠CEB=90,∴B、C、D、E四点共圆,∵,∠CBA=15,∴∠CED=15,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=1,∴AP+PQ≥1,∴AP+PQ的最小值为1.(2)∵A点坐标为(0,2),C点坐标为(1,1),设直线AC解析式为:y=kx+b把(0,2),(1,1)代入得解得∴直线AC解析式为:y=,设M点坐标为(x,),N坐标为(0,y).∵MN∥AB,∠CAB=15,∴∠CMN=15,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS=NR.∴,解得:,∴M点坐标为(﹣12,﹣1)Ⅱ.如解图2﹣2,∠MNC=90,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴,解得:,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣1)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.22、(1)(0,3);(2)y=1【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由SΔABC=12BC•OA,得到BC=4,进而得到C(0,-1).设l2的解析式为y=kx+b,把A(2,0),C(0,-1【详解】(1)在Rt△AOB中,∵OA∴22∴OB=3,∴点B的坐标是(0,3).(2)∵SΔABC=12∴12BC×2=4∴BC=4,∴C(0,-1).设l2的解析式为y=kx+b,把A(2,0),C(0,-1)代入得:2k+b=0b=-1∴k=1∴l2的解析式为是y=考点:一次函数的性质.23、(1)EG=CG,EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中结论仍然成立,理由见解析,点F在AB的左侧时,(1)中的结论仍然成立;(3)S△CEG=.【解析】
(1)过E作EM⊥AD交AD的延长线于M,证明△AME是等腰直角三角形,得出AM=EM=AE=AB,证出DG=AG=AD=AM=EM,得出GM=CD,证明△GEM≌△CGD(SAS),得出EG=CG,∠EGM=∠GCD,证出∠CGE=180°-90°=90°,即可得出EG⊥CG;(2)延长EG至H,使HG=EG,连接DH、CH、CE,证明△EFG≌△HDG(SAS),得出EF=HD,∠EFG=∠HDG,证明△CBE≌△CDH(SAS),得出CE=CH,∠BCE=∠DCH,得出∠ECH=∠BCD=90°,证明△ECH是等腰直角三角形,得出CG=EH=EG,EG⊥CG;延长EG至H,使HG=EG,连接DH、CH、CE,同理可证CG=EH=EG,EG⊥CG;(3)作EM垂直于CB的延长线与M,先求出BM,EM的值,即可根据勾股定理求出CE的长度,从而求出CG的长,即可求出面积.【详解】解:(1)EG=CG,EG⊥CG;理由如下:过E作EM⊥AD交AD的延长线于M,如图1所示:则∠M=90°,∵四边形ABCD是正方形,∴AB=AD=CD,∠BAD=∠D=90°,∴∠BAM=90°,∵△BEF是等腰直角三角形,∴∠BAE=45°,AE=AB,∴∠MAE=45°,∴△AME是等腰直角三角形,∴AM=EM=AE=AB,∵G是DF的中点,∴DG=AG=AD=AM=EM,∴GM=CD,在△GEM和△CGD中,,∴△GEM≌△CGD(SAS),∴EG=CG,∠EGM=∠GCD,∵∠GCD+∠DGC=90°,∴∠EGM+∠DGC=90°,∴∠CGE=180°-90°=90°,∴EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图2所示:∵G是DF的中点,∴FG=DG,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴EF=HD,∠EFG=∠HDG,∵△BEF是等腰直角三角形,∴EF=BE,∠BFE=∠FBE=45°,∴BE=DH,∵四边形ABCD是正方形,∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,∴∠AFD=∠CDG,∴∠AFE=∠CDH=135°,∵∠CBE=90°+45°=135°,∴∠CBE=∠CDH,在△CBE和△CDH中,,∴△CBE≌△CDH(SAS),∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠BCD=90°,∴△ECH是等腰直角三角形,∵EG=HG,∴CG=EH=EG,EG⊥CG;点F在AB的左侧时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图3所示:∵G是DF的中点,∴FG=DG,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴EF=HD,∠EFG=∠HDG,∵△BEF是等腰直角三角形,∴EF=BE,∠BEF=90°,∴BE=DH,∵四边形ABCD是正方形,∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,∴∠BNF=∠CDG,∵∠EFG+∠BNF+∠BEF+∠ABE=∠HDG+∠CDG+∠CDH=360°,∴∠BEF+∠ABE=∠CDH,∴∠ABC+∠ABE=∠CDH,即∠CBE=∠CDH,在△CBE和△CDH中,,∴△CBE≌△CDH(SAS),∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠BCD=90°,∴△ECH是等腰直角三角形,∵EG=HG,∴CG=EH=EG,EG⊥CG;(3)如下图所示:作EM垂直于CB的延长线与M,∵△BEF为等腰直角三角形,BF=3,∴BE=,∠ABE=45°,∵EM⊥BM,AB⊥CM,∴∠EBM=45°,∴△EMB为等腰直角三角形,∴EM=BM=,∵BC=4,∴CM=,∴CE=,由(2)知,△GEC为等腰直角三角形,∴CG=EG=,∴S△CEG=.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于压
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三次劳动合同(标准版)
- 杭州市卫生健康委员会所属五家事业单位招聘考试真题2024
- 广西壮族自治区市场监管局直属事业单位招聘考试真题2025
- 难点解析-人教版八年级物理上册第6章质量与密度-密度综合测试试卷(含答案详解)
- 难点解析人教版八年级物理上册第4章光现象定向测评试卷(详解版)
- 2025年金属冶炼单位安全生产管理人员考试(金属冶炼铝冶炼)仿真试题及答案
- 2025人教版高中英语主语从句练习题50题带答案
- 2025年房地产开发管理考试试卷及答案
- 2025金属非金属矿山主要负责人和安管人员考试测试题及答案
- 综合解析人教版八年级物理上册第5章透镜及其应用章节训练试题(含详细解析)
- 宾得全站仪R-422NM使用说明书
- 资源综合利用技术专业教学标准(高等职业教育专科)2025修订
- 高处坠落伤的急救与护理
- 高层建筑施工安全风险评估
- 公司水电费费管理制度
- 2025年4月自考00264中国法律思想史试题及答案含评分标准
- 2025-2030年中国征信服务行业深度发展研究与“十四五”企业投资战略规划报告
- 校园共享自动售货机方案可行性研究报告(综合版)
- 无锡市滨湖区鼋头渚小学-主题班会-石矶娘娘拒绝内耗做自己【课件】
- 生食间管理制度
- 行政执法检查制度
评论
0/150
提交评论