2023届河南省周口商水县联考数学八年级第二学期期末综合测试模拟试题含解析_第1页
2023届河南省周口商水县联考数学八年级第二学期期末综合测试模拟试题含解析_第2页
2023届河南省周口商水县联考数学八年级第二学期期末综合测试模拟试题含解析_第3页
2023届河南省周口商水县联考数学八年级第二学期期末综合测试模拟试题含解析_第4页
2023届河南省周口商水县联考数学八年级第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.正八边形的每一个内角的度数为:()A.45° B.60° C.120° D.135°2.对于一次函数,如果随的增大而减小,那么反比例函数满足()A.当时, B.在每个象限内,随的增大而减小C.图像分布在第一、三象限 D.图像分布在第二、四象限3.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1 B.2 C.3 D.44.计算的结果为()A. B.±5 C.-5 D.55.下列计算正确的是()A.a3•a2=a6 B.(a3)4=a7 C.3a2﹣2a2=a2 D.3a2×2a2=6a26.边长为3cm的菱形的周长是()A.15cm B.12cm C.9cm D.3cm7.如图,在矩形中,点的坐标为,则的长是()A. B. C. D.8.在平面直角坐标系中,点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知四边形,对角线与交于点,从下列条件中:①;②;③;④.任取其中两个,以下组合能够判定四边形是平行四边形的是()A.①② B.②③ C.②④ D.①④10.在下列数据6,5,7,5,8,6,6中,众数是()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)11.内角和等于外角和2倍的多边形是__________边形.12.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.13.如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.14.不等式组的解集是x>4,那么m的取值范围是_____.15.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.16.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.17.已知互为相反数,则的值为______.18.如果向量,那么四边形的形状可以是_______________(写出一种情况即可)三、解答题(共66分)19.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.20.(6分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.(1)求出点的坐标(2)当时,直接写出x的取值范围.(3)点在x轴上,当△的周长最短时,求此时点D的坐标(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,▱ABCD中,E为BC边的中点,连AE并与DC的延长线交于点F,求证:DC=CF.22.(8分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.23.(8分)解一元二次方程:.24.(8分)因式分解:(1)36﹣x2(2)ma2﹣2ma+m25.(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.26.(10分)如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100元(1)直接写出当和时,与的函数关系式.(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

180°-360°÷8=135°,故选D.【点睛】错因分析较易题.失分原因:没有掌握正多边形的内角公式.2、D【解析】

一次函数,y随着x的增大而减小,则m<0,可得出反比例函数在第二、四象限,在每个象限内y随x的增大而增大.【详解】解:∵一次函数,y随着x的增大而减小,∴m<0,∴反比例函数的图象在二、四象限;且在每一象限y随x的增大而增大.∴A、由于m<0,图象在二、四象限,所以x、y异号,错误;B、错误;C、错误;D、正确.故选:D.【点睛】本题考查了一次函数和反比例函数的图象和性质,注意和的图象与式子中的符号之间的关系.3、B【解析】

根据平行四边形的性质可得∠AFB=∠FBC,由角平分线可得∠ABF=∠FBC,所以∠AFB=∠ABF,所以AF=AB=1,同理可得DF=CD=1,则根据EF=AF+DF-AD即可求解.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=1.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=1.同理可得DF=DC=1.∴EF=AF+DF﹣AD=1+1﹣10=2.故选:B.【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.4、D【解析】

根据二次根式的性质进行化简即可判断.【详解】解:=1.故选:D.【点睛】本题考查了二次根式的化简,关键是理解以下几点:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,②性质:=|a|.5、C【解析】

根据同底数幂乘法、幂的乘方、整式加减法和乘法运算法则进行分析.【详解】A.a3•a2=a5,本选项错误;B.(a3)4=a12,本选项错误;C.3a2﹣2a2=a2,本选项正确;D.3a2×2a2=6a4,本选项错误.故选C【点睛】本题考核知识点:整式运算.解题关键点:掌握整式运算法则.6、B【解析】

由菱形的四条边长相等可求解.【详解】解:∵菱形的边长为3cm∴这个菱形的周长=4×3=12cm故选:B.【点睛】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.7、C【解析】

连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,

∵点B的坐标是(1,4),

∴OM=1,BM=4,由勾股定理得:OB=,

∵四边形OABC是矩形,

∴AC=OB,

∴AC=,

故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.8、B【解析】

应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】∵点P(−1,2)的横坐标−1<0,纵坐标2>0,∴点P在第二象限。故选:B.【点睛】此题考查点的坐标,难度不大9、D【解析】

以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可求出OB=OD,根据平行四边形的判定推出即可;【详解】以①④作为条件,能够判定四边形ABCD是平行四边形.理由:∵AB//CD,∴∠OAB=∠OCD,在△AOB和△COD中,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形.故选:D.【点睛】本题考查平行四边形的全等条件,熟练掌握平行四边形的性质的解题关键10、B【解析】

根据众数的概念进行解答即可.【详解】在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,所以这组数据的众数是6,故选B.【点睛】本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.二、填空题(每小题3分,共24分)11、六【解析】

设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:

180(n-2)=360×2,

解得:n=6,

故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).12、13【解析】

根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【点睛】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.13、50°【解析】

由旋转可得∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,则∠CAE=∠CEA,再由三角形的外角性质可得∠CDE=∠CAE+∠AED可求出∠CAE的度数.【详解】∵△ABC绕点C顺时针旋转得到△EDC∴∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,∴∠CAE=∠CEA,则∠AED=∠CEA-30°又∵∠CDE=∠CAE+∠AED即∠CAE+∠CAE-30°=70°解得∠CAE=50°故答案为:50°.【点睛】本题考查三角形中的角度计算,解题的关键是利用旋转的性质得到旋转后的角度,并利用三角形的外角性质建立等量关系.14、m≤1【解析】

根据不等式组解集的求法解答.求不等式组的解集.【详解】不等式组的解集是x>1,得:m≤1.故答案为m≤1.【点睛】本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15、y=2x2+1.【解析】

先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.【详解】抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.故答案是:y=2x2+1.【点睛】本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.16、y=-2x-1.【解析】

直接根据“上加下减”的平移规律求解即可.【详解】直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.故答案为:y=-2x-1.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17、0【解析】

先变形为,再提取公因式分解因式即可得.然后利用相反数的定义将整体代入即可求解.【详解】解:因为,互为相反数,所以,原式.故答案为:0.【点睛】本题考查了对一个多项式因式分解的灵活运用能力,结合互为相反数的两数和为0,巧求代数式的值.18、平行四边形【解析】

根据相等向量的定义和四边形的性质解答.【详解】如图:∵=,∴AD∥BC,且AD=BC,∴四边形ABCD的形状可以是平行四边形.故答案为:平行四边形.【点睛】此题考查了平面向量,掌握平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)是解题的关键.三、解答题(共66分)19、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】

待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).20、(1)(6,3);(2);(3)(0,0);(4)(6,9)或(6,-3)或(-6,3).【解析】

(1)直接联立两直线解析式,即可得到点A的坐标;(2)直接在图象上找到时,x的取值范围;(3)过点A作交点为E即可得出点D与点O重合的时候,△的周长最短,即可得出点D的坐标;(4)分三种情况考虑:当四边形OAQ1C为平行四边形时;当四边形OQ2AC为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q的坐标即可.【详解】(1)联立两直线解析式可得解得:点A的坐标为(6,3)(2)由点A(6,3)及图象知,当时,(3)过点A作交点为E,由图可知点B关于直线AE的对称点为点O当点D与点O重合的时候,△的周长最短即为CO+BC=6+6此时点D的坐标为(0,0)(4)存在点,使以为顶点的四边形是平行四边形如图所示,分三种情况考虑:当四边形OAQ1C为平行四边形时,点Q1的横坐标为6,纵坐标为点C的纵坐标+3=9Q1的坐标为(6,9)当四边形OQ2AC为平行四边形时,点Q2的横坐标为6,纵坐标为点A的纵坐标-6=-3Q2的坐标为(6,-3)当四边形OACQ3为平行四边形时,点Q3关于OC的对称点为点AQ3的坐标为(-6,3)综上点Q的坐标为:(6,9)或(6,-3)或-6,3).【点睛】本题考查了一次函数的性质,平行四边形的性质,轴对称的性质,解题的重点是要熟练掌握各自的性质.21、见解析【解析】

先证明△ABE≌△FCE,得AB=FC,进而即可得到结论.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∵E为BC中点,∴EB=EC,在△ABE与△FCE中,∵,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.【点睛】本题主要考查平行四边形的性质定理和三角形全等的判定和性质定理,掌握平行四边形的对边平行且相等,是解题的关键.22、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.【解析】

(1)直接把已知点代入函数关系式进而得出m,n的值;(2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;(3)分别得出AO,BO的长,进而得出四边形PAOB的面积.【详解】(1)把P(1,2)代入y=x+n﹣2得:1+n﹣2=2,解得:n=3;把P(1,2)代入y=mx+3得:m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为:x<1;(3)当x=0时,y=x+1=1,故OA=1,当y=0时,y=﹣x+3,解得:x=3,则OB=3,四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.【点睛】此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.23、,【解析】

利用公式法求解即可.【详解】解:a=2,b=-5,c=1,∴∴∴,【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及公式法,熟练掌握各种解法是解题的关键.24、(1)(6+x)(6﹣x);(1)m(a﹣1)1.【解析】

1)原式利用平方差公式分解即可;(1)原式提取m,再利用完全平方公式分解即可.【详解】(1)原式=(6+x)(6﹣x);(1)原式=m(a1﹣1a+1)=m(a﹣1)1.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25、【解析】

连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接,作于,如图所示:则,点为的中点,,,,,,,,是直角三角形,,,,,,,在中,由勾股定理得:;【点睛】本题考查勾股定理,解题关键在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论