2023届河南省安阳市殷都区数学八年级第二学期期末复习检测模拟试题含解析_第1页
2023届河南省安阳市殷都区数学八年级第二学期期末复习检测模拟试题含解析_第2页
2023届河南省安阳市殷都区数学八年级第二学期期末复习检测模拟试题含解析_第3页
2023届河南省安阳市殷都区数学八年级第二学期期末复习检测模拟试题含解析_第4页
2023届河南省安阳市殷都区数学八年级第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知a、b是方程x2-2x-1=0的两根,则a2+a+3b的值是()A.7B.5C.-5D.-72.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD3.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.54.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为()A.48 B.96 C.80 D.1925.某中学田径队的18名队员的年龄情况如下表:年龄(单位:岁)1415161718人数37341则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,156.如图,每个小正方形边长均为1,则下列图中的阴影三角形与左图中相似的是()A. B.C. D.7.若是关于的一元二次方程的一个解,则2035-2a+b的值()A.17 B.1026 C.2018 D.40538.下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角9.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是(

)A.-1 B.1 C.0 D.不能确定10.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是()A.极差是 B.众数是 C.中位数是 D.平均数是二、填空题(每小题3分,共24分)11.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.12.在函数中,自变量x的取值范围是__________________.13.一个正多边形的每个内角度数均为135°,则它的边数为____.14.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.15.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.16.在一次函数y=(m-1)x+6中,y随x的增大而增大,则m的取值范围是______.17.如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.18.有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为.三、解答题(共66分)19.(10分)如图,已知△ABC中,∠B=90º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.20.(6分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.21.(6分)某旅游风景区,门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打b折.设团体游客人,门票费用为y元,y与x之间的函数关系如图所示.(1)填空:a=_______;b=_________.(2)请求出:当x>10时,与之间的函数关系式;(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x<100200.1请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m=,n=.(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.23.(8分)已知的三边长分别为,求证:是直角三角形.24.(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.25.(10分)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.26.(10分)总书记说:“读可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.

参考答案一、选择题(每小题3分,共30分)1、A【解析】分析:要求a²+a+3b的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可,注意计算不要出错.详解:由题意知,a+b=2,x²=2x+1,即a²=2a+1,∴a²+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选A.点睛:主要考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.2、C【解析】

根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.3、C【解析】【分析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求得E′M的长即可得答案.【详解】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值的点,则有PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB=,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选C.【点睛】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P的位置是解题的关键.4、B【解析】

根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,在Rt△AOB中,BO==6,则BD=2BO=12,故S菱形ABCD=AC×BD=1.故选:B.【点睛】此题考查学生对菱形的性质及勾股定理的理解及运用.5、A【解析】

结合表格中的数据,根据众数和中位数的定义即可求解.【详解】∵1岁的有7人,最多,∴众数为:1,中位数为:(1+1)÷2=1.故选A.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、B【解析】

根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【详解】解:由勾股定理得:AB=,BC=2,AC=,∴AB:BC:AC=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;C、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:B.【点睛】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.7、B【解析】

把x=2代入方程得2a-b=1009,再代入,可求得结果.【详解】因为是关于x的一元二次方程的一个解,所以,4a-2b-2018=0,所以,2a-b=1009,所以,=2035-(2a-b)=2035-1009=1026.故选B.【点睛】本题主要考查一元二次方程的根的意义.8、B【解析】

根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.【详解】A.一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;B.一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;C.矩形的两条对角线相等,正确,是必然事件,故不符合题意;D.菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,故选B.【点睛】本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.9、C【解析】

将x=-1代入方程,就可求出a-b+c的值.【详解】解:将x=-1代入方程得,a-b+c=0故答案为:C【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10、B【解析】试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:A、极差=14﹣7=7,结论正确,故本选项错误;B、众数为7,结论错误,故本选项正确;C、中位数为8.5,结论正确,故本选项错误;D、平均数是8,结论正确,故本选项错误.故选B.二、填空题(每小题3分,共24分)11、841【解析】

认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【详解】解:由已知等式可知,,∴故答案为:84、1.【点睛】本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.12、x≥0且x≠1【解析】

根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x≥0且x﹣1≠0,解得x≥0且x≠1,故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.13、8【解析】

试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和14、22.1【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,∴这组数据为11,20,21,25,29,∴平均数=(11+20+21+25+29)÷5=22.1.故答案是:22.1.【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、m>1【解析】

由一次函数的性质可得到关于m的不等式,可求得m的取值范围.【详解】解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,∴m-1>0,解得m>1,故答案为:m>1.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.17、4.【解析】

先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.【详解】解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,∴四边形EFGH是矩形,边接AC,则AC=BD=4,又∵EH是△ABD的中位线,∴EH=BD=2,同理EF=AC=2,∴四边形EFGH的面积为2×2=4.故答案为4.【点睛】本题考查了正方形的性质,矩形的判定,三角形中位线定理.18、AB=2BC.【解析】

过A作AE⊥BC于E、作AF⊥CD于F,∵甲纸条的宽度是乙纸条宽的2倍,∴AE=2AF,∵纸条的两边互相平行,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD=BC,∵∠AEB=∠AFD=90°,∴△ABE∽△ADF,∴,即.故答案为AB=2BC.【点睛】考点:相似三角形的判定与性质.点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.三、解答题(共66分)19、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【解析】

(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)当t=2时BQ=2×2=4cm,BP=AB-AP=16-2×1=14cm,∠B=90°,∴PQ==cm(2)依题意得:BQ=2t,BP=16-t2t=16-t解得:t=即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时(如下图),则∠C=∠CBQ,∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∴CQ=AQ=10∴BC+CQ=22∴t=22÷2=11秒②当CQ=BC时(如图2),则BC+CQ=24∴t=24÷2=12秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则BE=,∴CE=,故CQ=2CE=14.4,所以BC+CQ=26.4,∴t=26.4÷2=13.2秒由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【点睛】此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.20、,1.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.试题解析:原式=(==2(x+4)当x=1时,原式=1.21、(1)80;8(2)y=64x+160;(3)40人【解析】分析:(1)根据函数图象可以求得a、b的值;(2)根据函数图象可以求得当x>10时,y与x之间的函数关系式;(3)根据(2)中的解析式可以求得A旅游团的人数.详解:(1)由图象可知,a=800÷10=80,b=×10=8,故答案为:80,8;(2)当x>10时,设y与x之间的函数关系式是y=kx+m,则,解得,,即当x>10时,y与x之间的函数关系式是y=64x+160;(3)∵2720>800,∴将y=2720代入y=64x+160,得2720=64x+160,解得,x=40,即A旅游团有40人.点睛:本题考查一次函数的应用,揭帖关键是明确题意,找出所求问题需要的条件.22、(1)200,90,0.30;(2)见解析;(3)54°.【解析】

(1)用分组60≤x<70的频数除以频率可得总数,用总数乘以0.45可求得m的值,用60除以总数可求得n的值;(2)根据(1)中m的值画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题.【详解】解:(1)30÷0.15=200,m=200×0.45=90,n==0.30,故答案为:200,90,0.30;(2)频数直方图如图所示,(3)360°×=54°,故答案为:54°.【点睛】本题考查了频数分布表、频数分布直方图,读懂统计图表,从中得到必要的解题信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、见解析.【解析】

根据勾股定理的逆定理解答即可.【详解】证明:,以为三边的是直角三角形.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.24、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【解析】

(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)设用辆乙,则甲种客车数为:辆,代入计算即可(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名。依题意,列方程组,解得,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;答:老师有16

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论