版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.的相反数是()A. B. C. D.2.若正比例函数的图像经过点,则这个图像必经过点()A. B. C. D.3.为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是204.如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.265.从2004年5月起某次列车平均提速20千米/小时,用相同的时间,列车提速前行驶200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?设提速前这次列车的平均速度为千米/小时,则下列列式中正确的是()A. B. C. D.6.已知关于x的方程的解是正数,那么m的取值范围为()A.m>-6且m≠2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-27.若x1、x2是x2+x﹣1=0方程的两个不相等的实数根,则x1+x2﹣x1x2的值为()A.+1 B.﹣2 C.﹣2 D.08.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是()A.10 B.20 C.30 D.409.如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是()A.1个 B.2个C.3个 D.4个10.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,己知阴影部分的面积为36A.6 B.35-3 C.35-2 D.35-3二、填空题(每小题3分,共24分)11.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.12.已知直线与x轴的交点在、之间(包括、两点),则的取值范围是__________.13.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.14.若为三角形三边,化简___________.15.)如图,Rt△ABC中,C=90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.16.等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.17.式子有意义的条件是__________.18.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.三、解答题(共66分)19.(10分)已知是不等式的一个负整数解,请求出代数式的值.20.(6分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.21.(6分)阅读材料,解答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是:.(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:∵,(用含的式子表示)又∵.∴∴∴.(3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.22.(8分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?23.(8分)化简:÷(a-4)-.24.(8分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.(1)求线段AB的长度(2)求直线BC的解析式;(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.25.(10分)化简或解方程:(1)化简:(2)先化简再求值:,其中.(3)解分式方程:.26.(10分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据相反数的意义,可得答案.【详解】解:的相反数是-,故选B.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2、B【解析】
先利用待定系数法求出正比例函数的解析式,然后代入检验即可.【详解】解:设正比例函数的解析式为y=kx(k≠0),
∵y=kx的图象经过点(1,-2),
∴k=-2,
∴y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(-1,2).
故选B.【点睛】本题考查一次函数图象上点的坐标特征,直线经过点,点的坐标一定满足直线的解析式.解题的关键是正确求出正比例函数的解析式.3、A【解析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.4、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.5、B【解析】
设提速前列车的平均速度为x千米/小时,则提速之后的速度为(x+20)千米/小时,根据题意可得,相同的时间提速之后比提速之前多走50千米,据此列方程.【详解】设提速前列车的平均速度为x千米/小时,由题意得:.故选B.【点睛】考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.6、C【解析】
先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选:C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.7、D【解析】
根据韦达定理知x1+x2=﹣1、x1x2=﹣1,代入计算可得.【详解】解:∵x1、x2是x2+x﹣1=0方程的两个不相等的实数根,∴x1+x2=﹣1、x1x2=﹣1,∴原式=﹣1﹣(﹣1)=0,故选:D.【点睛】本题主要考查根与系数的关系,解题的关键是掌握韦达定理和整体代入思想的运用.8、B【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.【详解】由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,∵∠C=90°,CD=1,∴CD=DE=1.∵AB=10,∴S△ABD=AB•DE=×10×1=2.故选B.【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.9、C【解析】
由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=110°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=110°,故③正确;∴∠FDA=180°-∠DFE=180°-110°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.10、B【解析】
根据题意列方程,即x2+6x就是阴影部分的面积,用配方法解二次方程,取正数解即可.【详解】解:由题意得:x2+6x=36,
解方程得:x2+2×3x+9=45,
(x+3)2=45∴x+3=35,或x+3=-35,∴x=35-3,或x=-35-3<0,∴该方程的正数解为:35-3,故答案为:B【点睛】本题考查了解一元二次方程,属于模仿题型,正确理解题意是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【点睛】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.12、【解析】
根据题意得到的取值范围是,则通过解关于的方程求得的值,由的取值范围来求的取值范围.【详解】解:直线与轴的交点在、之间(包括、两点),,令,则,解得,则,解得.故答案是:.【点睛】本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得的值是解题的突破口.13、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.14、4【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.【详解】∵2,m,4是三角形三边,∴2<m<6,∴m-2>0,m-6<0,∴原式==m-2-(m-6)=4,故答案为:4.【点睛】此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.15、4.【解析】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.∴∠AOM+∠BOF=90°.又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.在△AOM和△BOF中,∵∠AMO=∠OFB=90°,∠OAM=∠BOF,OA=OB,∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.∴OF=CF.∴△OCF为等腰直角三角形.∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.16、12.【解析】
因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.【详解】解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;∴顶角的度数为80°或20°.故答案为80°或20°.【点睛】本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.17、且【解析】
式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.【详解】式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.【点睛】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.18、【解析】
根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案为:【点睛】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.三、解答题(共66分)19、,原式【解析】
先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.【详解】∵求解不等式,解得又当,时分式无意义∴∴原式【点睛】本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.20、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC,,即可判定为平行四边形;(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.【详解】解:(1)①,②平行四边形;由已知条件和三角形中位线定理,得又∵∴②由三角形中位线定理得,DE∥AC,,∴四边形是平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,四边形是菱形的理由是:∵,都是的中位线,∴,∴四边形是平行四边形∵是的中位线,∴∵∴,∴∴平行四边形是菱形.(3)设,当,是等腰直角三角形,∴∴由三角形中位线定理得,,∴,且和互相垂直平分∴四边形为正方形,∵,EF⊥AD,∴∴又∵,∴四边形为矩形,∴,∴所求面积比为【点睛】(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;(2)此题主要考查菱形的判定,熟练掌握,即可解题;(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.21、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.【解析】
(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在中,,,,,
由勾股定理得,,
故答案为:;(2),
又正方形的面积四个全等直角三角形的面积的面积正方形CFGH的面积,
.
.
,
故答案为:;正方形的面积;四个全等直角三角形的面积的面积正方形CFGH的面积;;(2)设,则,
由折叠的性质可知,,
在中,,
则,
解得,,
则PN的长为2.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.22、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】
(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,【详解】解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,根据题意,得:=,解得:x=50,经检验x=50是分式方程的解,答:甲每小时加工50个零件,则乙每小时加工40个零件;(2)设乙耽搁的时间为x小时,根据题意,得:50x+(50+40)(12﹣x)≥1000,解得:x≤2,答:乙最多可以耽搁2小时.【点睛】本题主要考查分式方程和一元一次不等式的实际应用23、【解析】
先利用平方差公式对进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【详解】原式===【点睛】本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.24、(1);(2);(3)P点的坐标是.【解析】
(1)先确定出点A,B坐标,利用勾股定理计算即可;(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.【详解】解:(1)∵直线交坐标轴于A、B两点.∴令,,∴B点的坐标是,,令,,∴A点的坐标是,,根据勾股定理得:.(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,∴四边形OECF是矩形.∵是等腰直角三角形,,,,,,,.∴四边形OECF是正方形,,,,.∴C点坐标设直线BC的解析式为:,∴将、代入得:,解得:,.∴直线BC的解析式为:.(3)延长AB交DP于M,由旋转知,BD=AB,∴∠BAD=∠BDA,∵AD⊥DP,∴∠ADP=90°,∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,∴∠AMD=∠BDM,∴BD=BM,∴BM=AB,∴点B是AM的中点,∵A(4,0),B(0,2),∴M(−4,4),∴直线DP的解析式为y=−x,∵直线DO交直线y=x+3于P点,将直线与联立得:解得:∴P点的坐标是.【点睛】此题是一次函数综合题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论