




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.82..一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图像是A. B. C. D.3.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.4.如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.175.如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为()A. B. C.2 D.6.如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为()A.16 B.15 C.14 D.137.如图,已知一次函数的图象与轴交于点,则根据图象可得不等式的解集是()A. B. C. D.8.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象9.如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于()A.135° B.45° C.22.5° D.30°10.要使分式x+1x-1有意义,则xA.x=-1 B.x=1 C.x≠1 D.x≠-111.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数 B.中位数 C.平均数 D.众数和中位数12.已知点,,三点都在反比例函数的图像上,则下列关系正确的是().A. B. C. D.二、填空题(每题4分,共24分)13.若a<0,则化简的结果为__________.14.已知,则x等于_____.15.如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形;……按此规律操作下去,得到的正方形的面积是______________.16.一个三角形的三边分别是2、1、3,这个三角形的面积是_____.17.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于_____.18.计算:=________.三、解答题(共78分)19.(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,DC=8,AD=4,求AE的长.20.(8分)如图,在四边形中,点分别是对角线上任意两点,且满足,连接,若.求证:(1)(2)四边形是平行四边形.21.(8分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点,连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H.(1)求证:四边形FCBG是矩形.(1)己知AB=10,DCAC①当四边形ECBH是菱形时,求EG的长.②连结CH,DH,记△DEH的面积为S1,△CBH的面积为S1.若EG=1FH,求S1+S1的值.22.(10分)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE求证:四边形BECD是矩形.23.(10分)(1)请计算一组数据的平均数;(2)一组数据的众数为,请计算这组数据的方差;(3)用适当的方法解方程.24.(10分)计算(2+1)(2﹣1)﹣(1﹣2)225.(12分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.(1)请填写下表;AB合计(吨)Cx240D260总计(吨)200300500(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.26.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=1.故选:C.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.2、D【解析】
燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),图象是以(0,20),(4,0)为端点的线段.【详解】解:燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),
图象是以(0,20),(4,0)为端点的线段.
故选:D.【点睛】此题首先根据问题从图中找出所需要的信息,然后根据燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系h=20-5t(0≤t≤4),做出解答.3、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.4、B【解析】
由菱形的性质可得AO=12AC=12,BO=12【详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=12∴AB=AO故选B.【点睛】本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.5、A【解析】
先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。【详解】解:∵四边形ABCD是菱形,∴AD//BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P关于直线BD的对称点P',连接P'Q,P'C,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,在Rt△BCP'中,∵BC=AB=2,∠B=60°,∴故选:A.【点睛】本题考查的是轴对称一最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、A【解析】
首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.【详解】连接AE,∵在Rt△ABC中,∠BAC=90∘,AB=8,AC=6,∴BC=∵DE是AB边的垂直平分线,∴AE=BE,∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16,故选A.【点睛】本题考查勾股定理,熟练掌握勾股定理的性质是解题关键.7、D【解析】
,即,从图象可以看出,当时,,即可求解.【详解】解:,即,从图象可以看出,当时,,故选:.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值,是解答本题的关键.8、B【解析】
根据中心对称和轴对称图形的定义判定即可.【详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【点睛】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.9、C【解析】
根据正方形、菱形的性质解答即可.【详解】∵AC是正方形的对角线,∴∠BAC=12∵AF是菱形AEFC的对角线,∴∠FAB=12∠BAC=1故选C.【点睛】本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.10、C【解析】
根据分式的分母不为0即可求解.【详解】依题意得x-1≠0,∴x≠1故选C.【点睛】此题主要考查分式的有意义的条件,解题的关键是熟知分母不为零.11、A【解析】
根据众数、平均数和中位数的定义分别对每一项进行分析,即可得出答案.【详解】A、这组数据3、4、5、5、6、6、6、6、7的众数是6,若去掉其中一个数6时,众数还是6,故本选项正确;
B、原数据的中位数是6,若去掉其中一个数6时,中位数是=5.5,故本选项错误;
C、原数据的平均数是,若去掉其中一个数6时,平均数是,故本选项错误;
D、众数不变,中位数发生改变,故本选项错误;
故选A.【点睛】考查了确定一组数据的中位数、平均数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12、B【解析】解:∵,∴,,即.故选B.二、填空题(每题4分,共24分)13、-a【解析】
直接利用二次根式的化简的知识求解即可求得答案.【详解】∵a<0,∴=|a|=﹣a.故答案为﹣a.【点睛】本题考查了二次根式的化简.注意=|a|.14、2【解析】
先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x>0∵x+2+=10++3=10=2x=2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.15、【解析】
根据正比例函数的性质得到,,均为等腰直角三角形,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵点的坐标为,∴点的坐标为,∴正方形的边长为1,面积为1.∵直线l为正比例函数的图象,∴,,均为等腰直角三角形,∴,,正方形的边长为,面积为.同理,正方形的边长为,面积为……所以正方形的面积是.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,,均为等腰直角三角形,正确找出规律是解题的关键.16、2【解析】
首先根据勾股定理逆定理可判定此三角形是直角三角形,然后再计算面积即可.【详解】解:∵(2)2+12=3=(3)2,∴这个三角形是直角三角形,∴面积为:12×1×2=2故答案为:22【点睛】考查了二次根式的应用以及勾股定理逆定理,关键是正确判断出三角形的形状.17、1【解析】
首先证明是等边三角形,求出,即可解决问题.【详解】解:由作图可知,四边形是平行四边形,,,,,是等边三角形,,,,四边形的周长为1,故答案为1.【点睛】本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、7【解析】
根据平方差公式展开,再开出即可;【详解】===7.故答案为7.【点睛】本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.三、解答题(共78分)19、(1)见解析;(2)5.【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】(1)证明:,,,(2)故答案为5.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.20、(1)详见解析;(2)详见解析【解析】
(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.【详解】证明:(1),又∴(SAS).(2),四边形是平行四边形【点睛】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.21、(1)证明见解析(1)①8011②2或【解析】
(1)由EF是中位线,得EF平行AB,即FG平行CB,已知FG=CB,由一组对边平行且相等得四边形FCBG是平行四边形,又因为CD垂直AB,则四边形FCBG是矩形.(1)①因为EF平行AC,根据平行列比例式,设EF为3x,由中位线性质,直角三角形的中线的性质,四边形ECBH是菱形等条件,通过线段的长度转化,最终把AC和BC用含x的关系式表示,由AB=8,列方程,求出x,把EG也用含x的代数式表示,代入x值,即可求出EG的长.②由EF是△ACD的中位线,得DF=CF,根据同底等高三角形面积相等,得△DEH和△CEH的面积相等,因为四边形CEHB是平行四边形,所以△CEH的面积和△BCH的面积相等,得到关系式:S1+S1=1S1,由EF+FH=FH+HG,得EF=HG,结合已知EG=1FH,得FH=1FG,设EF等于a,把有关线段用含a的代数式表示,分两种情况,即点H在FG上和点H在EF上,根据AB=10列关系式,求出a的值,再把S1用含a的代数式表示,代入a值即可.【详解】(1)∵EF即是△ADC的中位线,∴EF∥AC,即FG∥CB.∵FG=CB,∴四边形FCBG是平行四边形.∵CD⊥AB,即∠FCB=90°,∴四边形FCBG是矩形.(1)解:①∵EF是△ADC的中位线,∴EF=12AC,DF=12∴DFEF∴可设EF=3x,则DF=CF=4x,AC=6x.∵∠EFC=90°,∴CE=5x.∵四边形ECBH是菱形,∴BC=EC=5x,∴AB=AC+CB=6x+5x=10,∴x=10∴EG=EF+FG=EF+BC=3x+5x=8x=8011②∵EH∥BC,BH∥CE,∴四边形ECBH是平行四边形,∴EH=BC,又∵DF=CF,∴S△DEH=S△CEH,∵四边形ECBH是平行四边形,∴S△CEH=S△BCH∴S1+S1=1S1.∵EH=BC=FG,∴EF=HG.当点H在线段FG上时,如图,设EF=HG=a,∵EG=1FH,∴EG=1FH=4a,AC=1EF=1a,∴BC=FG=3a.∴AB=AC+BC=1a+3a=10,∴a=1.∵FC=23AC=43∴S1+S1=1S1=1×12×3a×43a=4a1=当点H在线段EF上时,如图.设EH=FG=a,则HF=1a.同理可得AC=6a,BC=a,FC=4a,∴AB=6a+a=10,∴a=10∴S1+S1=1S1=1×12×a×4a=4a1=400综上所述,S1+S1的值是2或40049【点睛】本题考查了四边形的综合,涉及的知识点有平行四边形的判定和性质,矩形的判定,菱形的性质,三角形中位线的性质,灵活利用(特殊)平行四边形的性质求线段长及三角形的面积是解题的关键.22、证明见解析【解析】
根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【详解】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.23、(1)4;(2);(3)【解析】
(1)根据算数平均数公式求解即可;(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;(3)用因式分解法解一元二次方程.【详解】解:(1)∴这组数据的平均数为4;(2)由题意可知:x=2∴∴这组数据的方差为;(3)或∴【点睛】本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.24、4-2.【解析】
直接利用乘法公式以及二次根式的性质分别计算得出答案.【详解】解:原式=12-1-(1-4+12)=4-2【点睛】此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.25、(1)240﹣x、x﹣40、260﹣x;(2)40≤x≤240;(1)0<n≤1.【解析】
(1)根据题意可以将表格中的空缺数据补充完整,(2)根据题意可以求得W与x的函数关系式,并写出x的取值范围,(1)根据题意,利用分类讨论的数学思想可以解答本题.【详解】解:(1)∵C市运往B市x吨,∴C市运往A市(240﹣x)吨,D市运往B市(100﹣x)吨,D市运往A市260﹣(100﹣x)=(x﹣40)吨,故答案为:240﹣x、x﹣40、260﹣x;(2)由题意可得,W=20(240﹣x)+25x+15(x﹣40)+10(100﹣x)=﹣10x+11200,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆乌鲁木齐第十三中学2024-2025学年初三3月模拟考试数学试题含解析
- 新疆乌鲁木齐市四中2025届高三下学期学习能力诊断化学试题含解析
- 新乡医学院三全学院《中学化学教学设计与技能训练(一)》2023-2024学年第二学期期末试卷
- 2025至2031年中国礼品灯具行业投资前景及策略咨询研究报告
- 2025至2031年中国粉末冶金摩擦片及结构件行业投资前景及策略咨询研究报告
- 赣州市重点中学2024届中考联考数学试题含解析
- 2025年工厂安全培训考试试题答案完美版
- 2025年新入职工入职安全培训考试试题答案高清版
- 2024-2025项目安全培训考试试题【预热题】
- 2025年公司三级安全培训考试试题含答案【完整版】
- (3.21)-5.4手臂振动病职业卫生与职业医学
- 2023年海南省初二会考地理真题含答案
- 作文悬念的设置课件
- 2022年西藏中考化学真题及答案
- 《特殊教育概论》考试试题及答案(完整版)
- 农田水利渠道灌溉节水改造工程设计施工方案
- 生姜检验报告单
- 硫酸车间焚硫炉烘炉及锅炉煮炉方案资料
- 锚索抗滑桩毕业设计(湖南工程学院)
- 中国少数民族作家学会入会申请表(共2页)
- 消检电检方案
评论
0/150
提交评论