2023届福建省泉州市惠安县数学八年级第二学期期末联考试题含解析_第1页
2023届福建省泉州市惠安县数学八年级第二学期期末联考试题含解析_第2页
2023届福建省泉州市惠安县数学八年级第二学期期末联考试题含解析_第3页
2023届福建省泉州市惠安县数学八年级第二学期期末联考试题含解析_第4页
2023届福建省泉州市惠安县数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A. B.1 C. D.62.设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2 B. C. D.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-24.在平面直角坐标系中,点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列各图所示能表示y是x的函数是()A. B.C. D.6.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路xm.依题意,下面所列方程正确的是A. B. C. D.7.如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是()A. B. C. D.8.如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是()A.矩形 B.菱形 C.正方形 D.无法确定9.为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是2010.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg11.直角三角形的边长分别为a,b,c,若a2=9,b2=16,那么c2的值是()A.5 B.7 C.25 D.25或712.如图,函数与的图象交于点,那么关于x,y的方程组的解是A. B. C. D.二、填空题(每题4分,共24分)13.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.14.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.15.为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.16.直线过第_________象限,且随的增大而_________.17.如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.18.如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=_____cm.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.(1)求此抛物线的解析式(a、b、c可用含n的式子表示);(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.20.(8分)如图,在中,,于点,,.点从点出发,在线段上以每秒的速度向点匀速运动;与此同时,垂直于的直线从底边出发,以每秒的速度沿方向匀速平移,分别交、、于点、、,当点到达点时,点与直线同时停止运动,设运动时间为秒().(1)当时,连接、,求证:四边形为菱形;(2)当时,求的面积;(3)是否存在某一时刻,使为以点或为直角顶点的直角三角形?若存在,请求出此时刻的值;若不存在,请说明理由.21.(8分)问题提出:(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.问题探究:(2)如图3,在(1)的条件下,若,,且,,①求的度数.②过点A作直线,交直线于点E,.请求出线段的长.22.(10分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.23.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.⑴在线段AC上找一点P(不能借助圆规),使得,画出点P的位置,并说明理由.⑵求出⑴中线段PA的长度.24.(10分)如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.求证:四边形AEBC是矩形;过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.25.(12分)探究:如图,在正方形中,点,分别为边,上的动点,且.(1)如果将绕点顺时针方向旋转.请你画出图形(旋转后的辅助线).你能够得出关于,,的一个结论是________.(2)如果点,分别运动到,的延长线上,如图,请你能够得出关于,,的一个结论是________.(3)变式:如图,将题目改为“在四边形中,,且,点,分别为边,上的动点,且”,请你猜想关于,,有什么关系?并验证你的猜想.26.在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵D、E分别是AB、AC上点,DE//BC,∴∵AD=2,DB=1,AE=3,∴故选C.2、B【解析】

利用矩形的边=面积÷邻边,列式计算即可.【详解】解:a=S÷b=2÷=,故选:B.【点睛】此题考查二次根式的乘除法,掌握长方形面积计算公式是解决问题的根本.3、B【解析】

根据二次根式及分式有意义的条件即可解答.【详解】∵有意义,∴a-2>0,∴a>2.【点睛】本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.4、C【解析】

根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.【详解】解:在平面直角坐标系中,点位于第三象限,故选:.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、C【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断.【详解】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项错误;C、对于x的每一个取值,y只有唯一确定的值与之对应,所以y是x的函数,故本选项正确;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项错误.故选C.【点睛】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6、A【解析】

甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,.故选A.7、C【解析】

根据题意分析△PAB的面积的变化趋势即可.【详解】根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.故选C.【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.8、B【解析】

根据菱形的判定方法:四边都相等的四边形是菱形判定即可.【详解】根据作图方法可得:,因此四边形ABCD一定是菱形.故选:B【点睛】本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.9、A【解析】

根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.10、A【解析】

根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=1.故选A.【点睛】本题考查的是与一次函数图象结合用一次函数解决实际问题,本题关键是理解一次函数图象的意义以及与实际问题的结合.11、D【解析】

此题有两种情况:①当a,b为直角边,c为斜边,由勾股定理求出c2即可;②当a,c为直角边,b为斜边,利用勾股定理即可求解;即可得出结论.【详解】解:当b为直角边时,c2=a2+b2=25,当b为斜边时,c2=b2﹣a2=7,故选:D.【点睛】此题主要考查学生对勾股定理的理解和掌握;解答此题要用分类讨论的思想,学生容易忽略a,c为直角边,b为斜边时这种情况,很容易选A,因此此题是一道易错题.12、A【解析】

利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:根据题意可得方程组的解是.故选:A.【点睛】本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题(每题4分,共24分)13、小明【解析】

观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.【详解】解:根据图象可直接看出小明的成绩波动不大,

根据方差的意义知,波动越小,成绩越稳定,

故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、.【解析】

根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.【详解】解:∵△CDE恰为等边三角形,∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,∴△AEB’为等边三角形,由四边形ABCD为平行四边形,且∠B=60°,∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,∴B’,A,B三点在同一条直线上,∴AC是对折线,∴AC垂直且平分BB’,∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,∴面积为.【点睛】本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.15、从中抽取的名中学生的视力情况【解析】

根据从总体中取出的一部分个体叫做这个总体的一个样本解答即可.【详解】解:这个问题中的样本是从中抽取的1000名中学生的视力情况,

故答案为从中抽取的1000名中学生的视力情况.【点睛】本题考查的是样本的概念,掌握从总体中取出的一部分个体叫做这个总体的一个样本是解题的关键.16、【解析】

根据一次函数的性质解答即可.【详解】解:∵-2<0,1>0,∴直线过第一、二、四象限,且随的增大而减小,故答案为:一、二、四;减小.【点睛】本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.17、(−1.5,2)或(−3.5,−2)或(−0.5,4).【解析】

要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2的点,就是P点,因此令y=2或−2求得x的值即可.【详解】∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,当AC为平行四边形的边时,∴PQ=AC=2,∵P点在直线y=2x+5上,∴令y=2时,2x+5=2,解得x=−1.5,令y=−2时,2x+5=−2,解得x=−3.5,当AC为平行四边形的对角线时,∵AC的中点坐标为(3,2),∴P的纵坐标为4,代入y=2x+5得,4=2x+5,解得x=−0.5,∴P(−0.5,4),故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).【点睛】此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质18、1【解析】

根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.【详解】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1cm,∴AB=1BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=1cm.故答案为:1.【点睛】本题考查含30°角的直角三角形的性质和直角三角形斜边上的中线的性质,能灵活运用定理进行推理是解答此题的关键.三、解答题(共78分)19、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.【解析】

(3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;

(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);

(2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.【详解】解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),∴A(n,5),C(5,3),∵矩形OA′B′C′由矩形OABC旋转而成,∴A′(5,n),C′(﹣3,5);将抛物线解析式为y=ax2+bx+c,∵A(n,5),A′(5,n),C′(﹣3,5),∴,解得,∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;(2)对称轴为x=3,得﹣=3,解得n=2,则抛物线的解析式为y=﹣x2+2x+2.由,整理可得x2+(k﹣2)x﹣3=5,∴x3+x2=﹣(k﹣2),x3x2=﹣3.∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);(2)①当P点在AM下方时,如答图3,设P(5,p),易知M(3,4),从而Q(2,4+p),∵△PMQ′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过AM中点N(5,2),∴可知Q′在y轴上,易知QQ′的中点T的横坐标为3,而点T必在直线AM上,故T(3,4),从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S▱APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;②当P点在AM上方时,如答图2,设P(5,p),易知M(3,4),从而Q(2,4+p),∵△PMQ′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,联立,解得:x=,y=,∴H(,),∵H为QQ′中点,故易得Q′(,),由P(5,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+34=5,解得p3=7,p2=2(与AM中点N重合,舍去),∴P(5,7),∴PN=5,∴S▱APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.综上所述,▱APQM面积为5或3.【点睛】本题为二次函数的综合应用,涉及待定系数法确定函数解析式、二次函数的性质、一元二次方程根与系数的关系、方程思想及分类讨论思想等知识点.在(2)中利用求得n的值是解题的关键,在(2)中确定出k的值是解题的关键,在(2)中根据点P的位置分类讨论及根据已知条件求出点P的坐标是解决本题的难点.20、(1)见解析;(2);(3)存在以点为直角顶点的直角三角形.此时,.【解析】

(1)根据菱形的判定定理即可求解;(2)由(1)知,故,故,可求得,,再根据三角形的面积公式即可求解;(3)根据题意分①若点为直角顶点,②若点为直角顶点,根据相似三角形的性质即可求解.【详解】(1)证明:如图1,当时,,则为的中点,又∵,∴为的垂直平分线,∴,.∵,∴.∵,∴,,∴,∴,∴,即四边形为菱形.(2)如图2,由(1)知,∴,∴,即,解得:,,;(3)①若点为直角顶点,如图3①,此时,,.∵,∴,即:,此比例式不成立,故不存在以点为直角顶点的直角三角形;②若点为直角顶点,如图3②,此时,,,.∵,∴,即:,解得.故存在以点为直角顶点的直角三角形.此时,.【点睛】此题主要考查三角形的动点问题,解题的关键是熟知相似三角形的判定与性质.21、(1)30°;(2)①;②【解析】

(1)由旋转的性质,得△ABD≌,则,然后证明是等边三角形,即可得到;(2)①将绕点A逆时针旋转,使点B与点C重合,得到,连接.与(1)同理证明为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出,再由等边三角形的性质,即可求出答案.【详解】解:(1)根据题意,∵,,∴是等腰直角三角形,∴,∵,∴,由旋转的性质,则△ABD≌,∴,,,∴,∴是等边三角形,∴,∵,,∴≌,∴,∴;(2)①,.如图1,将绕点A逆时针旋转,使点B与点C重合,得到,连接.,,,,,..,为等边三角形,,,,,.②如图2,由①知,,在中,,.是等边三角形,,,.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.22、(1);(2).【解析】

(1)先用平方差公式分解,再用完全平方公式二次分解;(2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.【详解】(1)(x²+4)²-16x²=(x²+4+4x)(x²+4-4x)=(x+2)²(x-2)²;(2)原式=,由题意,x≠±2且x≠1,∴当x=-1时,原式=.【点睛】本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.23、(1)详见解析;(2)线段PA的长度为.【解析】试题分析:(1)利用方格纸可作出BC的垂直平分线交AC于点P,点P为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC2-PA2=AB2;(2)由图中信息可得AB=4,AC=6,设PA=,则PC=PB=6-,在Rt△PAB中,由勾股定理建立方程解出即可.试题解析:⑴如图,利用方格纸作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.∵在△APB中,∠A=90°,∴,即:,∴.⑵由图可得:AC=6,AB=4,设PA=x,则PB=PC=6-x∵在△PAB中,∠A=90°,∴,解得:,即PA=.答:线段PA的长度为.24、(1)见解析;(2).【解析】

(1)根据平行四边形的性质得到AD∥BC,AD=BC,推出四边形AEBC是平行四边形,求得∠CAE=90°,于是得到四边形AEBC是矩形;(2)根据三角形的内角和得到∠AGF=60°,∠EAF=60°,推出△AOE是等边三角形,得到AE=EO,求得∠GOF=∠GAF=30°,根据直角三角形的性质得到OG=2,根据三角形的面积公式即可得到结论.【详解】解:四边形ABCD是平行四边形,,,,,,四边形AEBC是平行四边形,,,,四边形AEBC是矩形;,,,,,四边形AEBC是矩形,,是等边三角形,,,,,,,,,的面积.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.25、(1)EF=BE+DF,画图如图所示;(2)BE=DF+EF;(3)EF=BE+DF,理由见解析【解析】

(1)画出图形,证明△AEF≌△AEF′,得到EF=EF′,根据EF′=BE+BF′=BE+DF得到结果;(2)将△ADF绕点A顺时针旋转90°,证明△AEF≌△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论