2023届福建省福州市三牧中学数学八下期末达标测试试题含解析_第1页
2023届福建省福州市三牧中学数学八下期末达标测试试题含解析_第2页
2023届福建省福州市三牧中学数学八下期末达标测试试题含解析_第3页
2023届福建省福州市三牧中学数学八下期末达标测试试题含解析_第4页
2023届福建省福州市三牧中学数学八下期末达标测试试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2,下面四个结论:①BF=;②∠CBF=45°;③△BEC的面积=△FBC的面积;④△ECD的面积为,其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.不等式组的解集在数轴上表示正确的是A. B. C. D.3.若式子有意义,则x的取值范围为().A.x≥2 B.x≠2 C.x≤2 D.x<24.已知正比例函数,且随的增大而减小,则的取值范围是()A. B. C. D.5.若一个三角形三个内角度数的比为,且最大的边长为,那么最小的边长为()A.1 B. C.2 D.6.如图,矩形在平面直角坐标系中,,,把矩形沿直线对折使点落在点处,直线与的交点分别为,点在轴上,点在坐标平面内,若四边形是菱形,则菱形的面积是()A. B. C. D.7.若,则的值为()A. B. C. D.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形9.四边形ABCD中,,,M、N分别是边AD,BC的中点,则线段MN的长的取值范围是()A. B. C. D.10.如图,平行四边形ABCD的对角线AC与BD相交于点O,,垂足为E,,,.则AE的长为()A. B.3 C. D.二、填空题(每小题3分,共24分)11.如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.12.如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.13.如图,在矩形中,,点分别在平行四边形各边上,且AE=CG,BF=DH,四边形的周长的最小值为______.14.如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.15.将正比例函数国象向上平移个单位。则平移后所得图图像的解析式是_____.16.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.17.如果,那么的值是___________.18.如图,直线与坐标轴相交于点,将沿直线翻折到的位置,当点的坐标为时,直线的函数解析式是_________________.三、解答题(共66分)19.(10分)关于的一元二次方程为(1)求证:无论为何实数,方程总有实数根;(2)为何整数时,此方程的两个根都为正数.20.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)21.(6分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.22.(8分)我们把对角线互相垂直的四边形叫做垂美四边形.(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,写出证明过程。(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=,BC=1求GE的长.23.(8分)学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为°;(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?24.(8分)已知:如图,四边形中,分别是的中点.求证:四边形是平行四边形.25.(10分)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若∠BAC=60°,BC=6,求△ABC的面积.26.(10分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据旋转的性质得到△BCF为等腰直角三角形,故可判断①②,根据三角形的面积公式即可判断③,根据直线DF垂直平分AB可得EH是△ABC的中位线,各科求出EH的长,再根据三角形的面积公式求出△ECD的面积即可判断④.【详解】∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CB=FC,∠BCF=90°,∴△BCF为等腰直角三角形,故∠CBF=45°,②正确;∵BC=2,∴FC=2,∴BF==,①正确;过点E作EH⊥BD,∵△BEC和△FBC的底都为BC,高分别为EH和FC,且EH≠FC,∴△BEC的面积≠△FBC的面积,③错误;∵直线DF垂直平分AB,∴AF=BF=,∴CD=AC=2+∵直线DF垂直平分AB,则E为AB中点,又AC⊥BC,EH⊥BC,∴EH是△ABC的中位线,∴EH=AC=1+,△ECD的面积为×CD×EH=,故④正确,故选C.【点睛】此题主要考查旋转的性质,解题的关键是熟知全等三角形的性质、垂直平分线的性质、三角形中位线的判定与性质.2、C【解析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.故选C.3、D【解析】

根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】解:∵式子有意义∴∴x<2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.4、D【解析】

根据正比例函数的性质,时,随的增大而减小,即,即可得解.【详解】根据题意,得即故答案为D.【点睛】此题主要考查正比例函数的性质,熟练掌握,即可解题.5、B【解析】

先求出三角形是直角三角形,再根据含30°角的直角三角形的性质得出即可.【详解】∵三角形三个内角度数的比为1:2:3,三角形的内角和等于180°,∴此三角形的三个角的度数是30°,60°,90°,即此三角形是直角三角形,∵三角形的最大的边长为2,∴三角形的最小的边长为×2=,故选B.【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能求出三角形是直角三角形是解此题的关键.6、C【解析】

如图,连接AD,根据勾股定理先求出OC的长,然后根据折叠的性质以及勾股定理求出AD、DF的长,继而作出符合题意的菱形,分别求出菱形的两条对角线长,然后根据菱形的面积等于对角线积的一半进行求解即可.【详解】如图,连接AD,∵∠AOC=90°,AC=5,AO=3,∴CO==4,∵把矩形沿直线对折使点落在点处,∴∠AFD=90°,AD=CD,CF=AF=,设AD=CD=m,则OD=4-m,在Rt△AOD中,AD2=AO2+OD2,∴m2=32+(4-m)2,∴m=,即AD=,∴DF===,如图,过点F作FH⊥OC,垂足为H,延长FH至点N,使HN=HF,在HC上截取HM=HD,则四边形MFDN即为符合条件的菱形,由题意可知FH=,∴FN=2FH=3,DH=,∴DM=2DH=,∴S菱形MFDN=,故选C.【点睛】本题考查了折叠的性质,菱形的判定与性质,勾股定理等知识,综合性质较强,有一定的难度,正确添加辅助线,画出符合题意的菱形是解题的关键.7、C【解析】

首先设,将代数式化为含有同类项的代数式,即可得解.【详解】设∴∴故答案为C.【点睛】此题主要考查分式计算,关键是设参数求值.8、C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.9、C【解析】

如图,连接BD,过M作MG∥AB交BD于G,连接NG,∵M是边AD中点,AB=3,MG∥AB,∴MG是边AD的中位线;∴BG=GD,MG=AB=;∵N是BC中点,BG=GD,CD=5,∴NG是△BCD的中位线,∴NG=CD=,在三角形MNG中,由三角形三边关系得NG-MG<MN<MG+NG即-<MN<+∴1<MN<4,当MN=MG+NG,即当MN=4,四边形ABCD是梯形,故线段MN的长取值为.故选C.【点睛】此题主要考查中位线的应用,解题的关键是根据题意作出图形求解.10、D【解析】

由平行四边形的性质可知,对角线互相平分,则得到AO=3,BO=5,而AB=4,三边长满足勾股定理,则三角形AOB是直角三角形,∠BAC=90°,则三角形BAC也是直角三角形,再用等面积法求AE.【详解】∵四边形ABCD是平行四边形∴又AB=4满足故三角形ABO是直角三角形,∠BAC=90°即三角形BAC也是直角三角形在三角形BAC中,∴而三角形的BAC面积=BA×AC×=BC×AE×则可得:4×6×=×AE×故AE=故选:D【点睛】本题综合性考察了直角三角形三边的关系,解题关键在于熟悉常见的勾股数,例如(3,4,5)(6,8,10),(5,12,13),熟悉后能够更快的判断出直角三角形.题中涉及到求直角三角形斜边的高,可以用到等面积法灵活处理.二、填空题(每小题3分,共24分)11、【解析】

过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.【详解】如图,过点A1分别作正方形两边的垂线A1D与A1E,

∵点A1是正方形的中心,

∴A1D=A1E,

∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,

∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,

∴△A1BD≌△A1CE(ASA),

∴△A1BD的面积=△A1CE的面积,

∴两个正方形的重合面积=正方形面积=,∴重叠部分的面积和为×2=.故答案是:.【点睛】考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.12、①③④【解析】

由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④【点睛】本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.13、20【解析】

作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值【详解】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示AE=CG.BE=BE′E′G′=AB=8,GG′=AD=6E`G=∵C四边形EFGH=2(GF+EF)=2E′G=20【点睛】此题考查矩形的性质,勾股定理,解题关键在于作辅助线14、【解析】

证明△ADD′是等腰直角三角形即可解决问题.【详解】解:由旋转可知:△ABD≌△ACD′,∴∠BAD=∠CAD′,AD=AD′=2,∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,∴DD′=,故答案为:.【点睛】本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、y=-1x+1【解析】

根据一次函数图象平移的性质即可得出结论.【详解】解:正比例函数y=-1x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-1x+1.

故答案为:y=-1x+1.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16、2.10【解析】由题意可知,将木块展开,

相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为:故答案是:2.1.17、【解析】

由得到再代入所求的代数式进行计算.【详解】∵,∴,∴,故答案为:.【点睛】此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.18、.【解析】

首先设A(0,y),B(x,0)进而计算AC的长度,可列方程求解y的值,同理计算BC的长度列出方程即可计算x的值,进而确定直线AB的解析式.【详解】解:设A(0,y),B(x,0)则AC2=,根据题意OA=AC=y所以可得解得y=2再根据BC2=,根据题意OB=BC=x所以可得解得x=2所以可得A(0,2)B(2,0)采用待定系数法可得即所以一次函数的解析式为故答案为【点睛】本题主要考查一次函数的解析式求解,关键在于利用直角三角形,求解A、B点的坐标.三、解答题(共66分)19、(1)为任何实数方程总有实数根;(2).【解析】

(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)根据根与系数的关系列出方程,结合题目条件求解即可.【详解】(1)∴为任何实数方程总有实数根。(2)设方程两根为,,则由题可得,∴或∴∵是整数,∴【点睛】此题考查了根的判别式,以及根与系数的关系,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.20、a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:,则整个乙部门的优秀率也是,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.21、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.【解析】

(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.【详解】(1)DE=EF,在△ABC中,点E,F分别为AC,BC的中点,∴EF∥AB,且EF=AB,在Rt△ACD中,点E为AC的中点,∴DE=AC,∵AB=AC,∴DE=EF;(2)∵AC平分∠BAD,EF∥AB,DE=AC=AE=EC,∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,∵∠DEF=90°,∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,∴∠BAC=∠DAC=30°,∴∠BAD=60°;(3)四边形ABCD的面积为:∵四边形CDEF是菱形,EC=DE,∴△CDE与△CEF都是等边三角形,∵EF=DE=CD=CF=2,∴AB=4,∴S△DCE=S△DEA=S△CEF;∵EF∥AB,∴,∴S△ABC=4S△CEF=4∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.【点睛】本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.22、菱形、正方形【解析】【分析】(1)根据垂美四边形的定义进行判断即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,正方形的对角线互相垂直,符合垂美四边形的定义,而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,故答案为:菱形、正方形;(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:如图2,连接AC、BD,交点为E,则有AC⊥BD,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,设AB与CE的交点为M∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,又∵AG=AC,AB=AE,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∠AME=∠BMC,∴∠ABG+∠BMC=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=,BC=1∴AB=2,∴,∴,∴,GE的长是.【点睛】本题考查了四边形综合题,涉及到正方形的性质、菱形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.23、(1)50;36°;(2)见解析;(3)估计该校每天阅读时长超过40分钟的学生约有500人【解析】

(1)用A类人数除以它所占的百分比得到调查的总人数;然后用D类人数分别除以调查的总人数×360°即可得到结论;(2)先计算出D类人数,然后补全条形统计图;(3)利用样本估计总体,用2000乘以样本中C+D类的百分比即可.【详解】解:(1)15÷30%=50,所以这次共抽查了50名学生进行调查统计;扇形统计图中D类所对应的扇形圆心角大小为:×360°=36°,故答案为50;36°;(2)D类人数为50﹣15﹣22﹣8=5,如图所示,该条形统计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论