




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.1.4概率的基本性质学习目标1.理解概率的基本性质.2.掌握利用互斥事件和对立事件的概率公式解决与古典概型有关的问题.知识点概率的基本性质性质1对任意的事件A,都有P(A)≥0.性质2必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.性质3如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5如果A⊆B,那么P(A)≤P(B).性质6设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).思考(1)如果事件A1,A2,…,An两两互斥,那么事件A1,A2,…,An的和事件的概率等于事件A1,A2,…,An的概率和吗?答案相等.P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).(2)对于任意事件A,事件A的概率的范围是多少?答案因∅⊆A⊆Ω,∴0≤P(A)≤1.1.A,B为两个事件,则P(A+B)=P(A)+P(B).(×)2.若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1.(×)3.事件A,B满足P(A)+P(B)=1,则A,B是对立事件.(×)4.如果事件A与事件B互斥,那么P(A)+P(B)≤1.(√)一、互斥事件与对立事件概率公式的应用例1某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中8环以下的概率.解“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”是彼此互斥的,可运用互斥事件的概率加法公式求解.设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为事件A,B,C,D,E,则(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.(2)方法一P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87,所以至少射中7环的概率为0.87.方法二事件“至少射中7环”的对立事件是“射中7环以下”,其概率为0.13,则至少射中7环的概率为1-0.13=0.87.(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,所以射中8环以下的概率为0.29.反思感悟运用互斥事件的概率加法公式解题的一般步骤(1)确定各事件彼此互斥.(2)求各事件分别发生的概率,再求其和.注意:(1)是公式使用的前提条件,不符合这点,是不能运用互斥事件的概率加法公式的.跟踪训练1在数学考试中,小明的成绩在90分及90分以上的概率是0.18,在80~89分(包括80分与89分,下同)的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算下列事件的概率:(1)小明在数学考试中取得80分及80分以上的成绩;(2)小明考试及格(60分及60分以上为及格).解分别记小明的成绩“在90分及90分以上”,“在80~89分”,“在70~79分”,“在60~69分”为事件B,C,D,E,显然这四个事件彼此互斥.(1)小明的成绩在80分及80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69.(2)方法一小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.方法二因为小明考试不及格的概率是0.07,所以小明考试及格的概率是1-0.07=0.93.二、互斥、对立事件与古典概型的综合应用例2一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球,从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球};A4={任取1球为绿球},则P(A1)=eq\f(5,12),P(A2)=eq\f(4,12),P(A3)=eq\f(2,12),P(A4)=eq\f(1,12).根据题意,事件A1,A2,A3,A4彼此互斥.方法一由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=eq\f(5,12)+eq\f(4,12)=eq\f(3,4).(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=eq\f(5,12)+eq\f(4,12)+eq\f(2,12)=eq\f(11,12).方法二(1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-eq\f(2,12)-eq\f(1,12)=eq\f(9,12)=eq\f(3,4).(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-eq\f(1,12)=eq\f(11,12).反思感悟求复杂事件的概率通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件.(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少……”或“至多……”型事件的概率.跟踪训练2某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示.现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.解分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A,B,C.由题图知3支球队共有球员20名.则P(A)=eq\f(5,20),P(B)=eq\f(3,20),P(C)=eq\f(4,20).(1)令“抽取一名队员,该队员只属于一支球队”为事件D.则D=A+B+C,∵事件A,B,C两两互斥,∴P(D)=P(A+B+C)=P(A)+P(B)+P(C)=eq\f(5,20)+eq\f(3,20)+eq\f(4,20)=eq\f(3,5).(2)令“抽取一名队员,该队员最多属于两支球队”为事件E,则eq\x\to(E)为“抽取一名队员,该队员属于3支球队”,∴P(E)=1-P(eq\x\to(E))=1-eq\f(2,20)=eq\f(9,10).正难则反思想的应用典例一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.解(1)由题意知,(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包含的样本点有(1,1,2),(1,2,3),(2,1,3),共3个.所以P(A)=eq\f(3,27)=eq\f(1,9).即“抽取的卡片上的数字满足a+b=c”的概率为eq\f(1,9).(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B的对立事件eq\x\to(B)包括的样本点有(1,1,1),(2,2,2),(3,3,3),共3种.∴P(B)=1-P(eq\x\to(B))=1-eq\f(3,27)=eq\f(8,9).即“抽取的卡片上的数字a,b,c不完全相同”的概率为eq\f(8,9).[素养提升]当正面考虑所解决的问题比较繁琐复杂时,可以通过逻辑推理,找到所求事件的对立事件,利用对立事件的概率的公式求解.1.在一个试验中,若P(A+B)=P(A)+P(B)=1,事件A与事件B的关系是()A.互斥不对立 B.对立不互斥C.互斥且对立 D.以上答案都不对答案C2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()A.0.42B.0.28C.0.3D.0.7答案C解析∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1-0.42-0.28=0.3,故选C.3.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件答案D解析由于A,B,C,D彼此互斥,且P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=1,知A+B+C+D是一个必然事件,故四个事件的关系如图所示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,故选D.4.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.eq\f(1,10) B.eq\f(3,10)C.eq\f(3,5) D.eq\f(9,10)答案D解析记3个红球分别为a1,a2,a3,2个白球分别为b1,b2,从3个红球、2个白球中任取3个,则样本空间Ω={(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),(a1,b1,b2),(a2,b1,b2),(a3,b1,b2)},共含10个样本点,样本点出现的机会均等,因此这些样本点的出现是等可能的.用事件A表示“所取的3个球中至少有1个白球”,则其对立事件eq\x\to(A)表示“所取的3个球中没有白球”,则事件eq\x\to(A)包含的样本点有1个(a1,a2,a3),所以P(eq\x\to(A))=eq\f(1,10).故P(A)=1-P(eq\x\to(A))=1-eq\f(1,10)=eq\f(9,10).5.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为eq\f(3,7),乙夺得冠军的概率为eq\f(1,4),那么中国队夺得女子乒乓球单打冠军的概率为________.答案eq\f(19,28)解析由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件的概率加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为eq\f(3,7)+eq\f(1,4)=eq\f(19,28).1.知识清单:性质1对任意的事件A,都有P(A)≥0.性质2必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.性质3如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5如果A⊆B,那么P(A)≤P(B).性质6设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).2.方法归纳:(1)将所求事件转化为互斥事件的并事件.(2)将求复杂事件的概率转化为求其对立事件的概率.3.常见误区:将事件拆分成若干个互斥的事件,不能重复和遗漏.1.P(A)=0.1,P(B)=0.2,则P(A+B)等于()A.0.3B.0.2C.0.1D.不确定答案D解析由于不能确定A与B是否互斥,则P(A+B)的值不能确定.2.(多选)下列四个命题中错误的是()A.对立事件一定是互斥事件B.若A,B为两个事件,则P(A∪B)=P(A)+P(B)C.若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1D.事件A,B满足P(A)+P(B)=1,则A,B是对立事件答案BCD解析对立事件首先是互斥事件,故A正确;只有互斥事件的和事件的概率才适合概率的加法公式,故B不正确;概率的加法公式可以适合多个互斥事件的和事件,但和事件不一定是必然事件,故C不正确;对立事件和的概率公式逆用不正确,比如在掷骰子试验中,设事件A={正面为奇数},B={正面为1,2,3},则P(A)+P(B)=1.而A,B不是对立事件,故D不正确.3.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是()A.[0,0.9] B.[0.1,0.9]C.(0,0.9] D.[0,1]答案A解析由于事件A和B是互斥事件,则P(A+B)=P(A)+P(B)=0.1+P(B),又0≤P(A+B)≤1,所以0≤0.1+P(B)≤1,又P(B)≥0,所以0≤P(B)≤0.9,故选A.4.从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件B=“抽到二等品”,事件C=“抽到三等品”.已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为()A.0.20B.0.39C.0.35D.0.90答案C解析∵抽到的不是一等品的对立事件是抽到一等品,而P(A)=0.65,∴抽到的不是一等品的概率是1-0.65=0.35.5.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在4.8~4.85g范围内的概率是()A.0.62B.0.38C.0.02D.0.68答案C解析设“质量小于4.8g”为事件A,“质量小于4.85g”为事件B,“质量在4.8~4.85g”为事件C,则A+C=B,且A,C为互斥事件,所以P(B)=P(A+C)=P(A)+P(C),则P(C)=P(B)-P(A)=0.32-0.3=0.02.6.某城市2018年的空气质量状况如下表所示:污染指数T3060100110130140概率Peq\f(1,10)eq\f(1,6)eq\f(1,3)eq\f(7,30)eq\f(2,15)eq\f(1,30)其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,该城市2018年空气质量达到良或优的概率为________.答案eq\f(3,5)解析由于空气质量达到良或优包含污染指数T≤100,由互斥事件概率的加法公式,得该城市2018年空气质量达到良或优的概率为eq\f(1,10)+eq\f(1,6)+eq\f(1,3)=eq\f(3,5).7.事件A,B互斥,它们都不发生的概率为eq\f(2,5),且P(A)=2P(B),则P(A)=________.答案eq\f(2,5)解析因为事件A,B互斥,它们都不发生的概率为eq\f(2,5),所以P(A)+P(B)=1-eq\f(2,5)=eq\f(3,5).又因为P(A)=2P(B),所以P(A)+eq\f(1,2)P(A)=eq\f(3,5),所以P(A)=eq\f(2,5).8.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是________.答案eq\f(5,6)解析设a,b分别为甲、乙摸出球的编号.由题意知,摸球试验共有36种不同的结果,满足a=b的基本事件共有6种.所以摸出编号不同的概率P=1-eq\f(6,36)=eq\f(5,6).9.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为不合格.假设此人对A和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.解将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),共有10种.令D表示此人被评为优秀的事件,E表示此人被评为良好的事件,F表示此人被评为良好及以上的事件,则(1)P(D)=eq\f(1,10).(2)P(E)=eq\f(3,5),P(F)=P(D)+P(E)=eq\f(7,10).10.袋中有外形、质量完全相同的红球、黑球、黄球、绿球共12个,从中任取一球,得到红球的概率是eq\f(1,3),得到黑球或黄球的概率是eq\f(5,12),得到黄球或绿球的概率也是eq\f(5,12).(1)试分别求得到黑球、黄球、绿球的概率;(2)从中任取一球,求得到的不是红球也不是绿球的概率.解(1)从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A,B,C,D,则P(A)=eq\f(1,3),P(B∪C)=P(B)+P(C)=eq\f(5,12),P(C∪D)=P(C)+P(D)=eq\f(5,12),P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-eq\f(1,3)=eq\f(2,3).联立eq\b\lc\{\rc\(\a\vs4\al\co1(PB+PC=\f(5,12),,PC+PD=\f(5,12),,PB+PC+PD=\f(2,3),))解得P(B)=eq\f(1,4),P(C)=eq\f(1,6),P(D)=eq\f(1,4),故得到黑球,得到黄球,得到绿球的概率分别为eq\f(1,4),eq\f(1,6),eq\f(1,4).(2)事件“得到红球或绿球”可表示为事件A∪D,由(1)及互斥事件的概率加法公式得P(A∪D)=P(A)+P(D)=eq\f(1,3)+eq\f(1,4)=eq\f(7,12),故得到的不是红球也不是绿球的概率P=1-P(A∪D)=1-eq\f(7,12)=eq\f(5,12).11.掷一枚骰子的试验中,出现各点的概率都为eq\f(1,6).事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+eq\x\to(B)(eq\x\to(B)表示事件B的对立事件)发生的概率为()A.eq\f(1,3)B.eq\f(1,2)C.eq\f(2,3)D.eq\f(5,6)答案C解析由题意知,eq\x\to(B)表示“大于或等于5的点数出现”,事件A与事件eq\x\to(B)互斥,由互斥事件的概率加法公式,可得P(A+eq\x\to(B))=P(A)+P(eq\x\to(B))=eq\f(2,6)+eq\f(2,6)=eq\f(4,6)=eq\f(2,3).12.在5件产品中,有3件一级品和2件二级品,从中任取2件,下列事件中概率为eq\f(7,10)的是()A.都是一级品B.都是二级品C.一级品和二级品各1件D.至少有1件二级品答案D解析样本点总数为10,2件都是一级品包含的样本点有3个,其概率为eq\f(3,10),其对立事件是至少有1件二级品,故“至少有1件二级品”的概率为eq\f(7,10).13.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选中男教师的概率为eq\f(9,20),则参加联欢会的教师共有________人.答案120解析可设参加联欢会的教师共有n人,由于从这些教师中选一人,“选中男教师”和“选中女教师”两个事件是对立事件,所以选中女教师的概率为1-eq\f(9,20)=eq\f(11,20).再由题意,知eq\f(11,20)n-eq\f(9,20)n=12,解得n=120.14.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.答案eq\f(5,6)解析由题意知摸出的2只球的颜色相同的概率为eq\f(1,6),故所求概率P=1-eq\f(1,6)=eq\f(5,6).15.甲、乙两人从1,2,3,…,10中各任取一数(不重复),已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国家开放大学(电大)《体育与健康教育》期末考试备考试题及答案解析
- 2025年国家开放大学(电大)《人口学原理》期末考试备考试题及答案解析
- 2019中考英语写作常用句型总结
- 【新教材核心素养】部编版历史七下 第3课 开元盛世(教学+公开课一等奖创新教学设计)
- 2025年国家开放大学《网络品牌传播管理》期末考试备考试题及答案解析
- 江苏省扬州市地铁消防安全测试题九(含答案)
- 2025年国家开放大学《金融机构管理》期末考试备考试题及答案解析
- 物流仓储系统操作规范大全
- 2025年国家开放大学《现代政治学》期末考试备考试题及答案解析
- 神经外科临床抗菌药物使用指南2024版
- GB/T 8017-2012石油产品蒸气压的测定雷德法
- GB/T 15382-2021气瓶阀通用技术要求
- 零星工程维修合同
- DB37-T 4328-2021 建筑消防设施维护保养技术规程
- 防盗门安装施工方案50173
- 传染病布氏菌病 课件
- 航空器紧固件安装及保险课件
- 初始过程能力研究报告-PPK
- 普通话班会课市公开课金奖市赛课一等奖课件
- 摄影器材公司销售和顾客服务质量管理方案
- 钢筋的计算截面面积表
评论
0/150
提交评论