2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)_第1页
2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)_第2页
2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)_第3页
2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)_第4页
2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省唐山市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

2.函数A.1B.2C.3D.4

3.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be

4.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π

B.函数f(x)是偶函数

C.函数f(x)是图象关于直线x=π/4对称

D.函数f(x)在区间[0,π/2]上是增函数

5.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.

B.

C.

D.

6.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.

B.

C.

D.

7.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.1

8.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1

9.设sinθ+cosθ,则sin2θ=()A.-8/9B.-1/9C.1/9D.7/9

10.A.B.C.D.

11.若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为()A.2B.3C.4D.16

12.若事件A与事件ā互为对立事件,则P(A)+P(ā)等于()A.1/4B.1/3C.1/2D.1

13.A.7.5

B.C.6

14.A.2B.3C.4

15.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.6

16.下列命题是真命题的是A.B.C.D.

17.下列函数中,既是奇函数又是增函数的是A.B.C.D.y=3x

18.已知角α的终边经过点(-4,3),则cosα()A.4/5B.3/5C.-3/5D.-4/5

19.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集

20.A.

B.

C.

D.

二、填空题(10题)21.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

22.

23.设A=(-2,3),b=(-4,2),则|a-b|=

24.

25.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

26.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

27.

28.

29.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

30.若x<2,则_____.

三、计算题(5题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

32.解不等式4<|1-3x|<7

33.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

四、简答题(10题)36.求经过点P(2,-3)且横纵截距相等的直线方程

37.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

38.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.

39.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

40.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

41.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值

42.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

43.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

44.由三个正数组成的等比数列,他们的倒数和是,求这三个数

45.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

五、证明题(10题)46.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

47.己知sin(θ+α)=sin(θ+β),求证:

48.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

50.若x∈(0,1),求证:log3X3<log3X<X3.

51.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

52.

53.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

54.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

55.△ABC的三边分别为a,b,c,为且,求证∠C=

六、综合题(2题)56.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

参考答案

1.D根据直线与平面垂直的性质定理,D正确。

2.B

3.B不等式的性质。由不等式性质得B正确.

4.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,

5.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.

6.C

7.A同角三角函数的变换.若cosα=0,则sinα=0,显然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.

8.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。

9.A三角函数的计算.因为sinθ+cosθ=1/3,(sinθ+cosθ)2=1/9=1+sin2θ所以sin2θ=-8/9

10.A

11.C集合的运算.A∩B={1,3},其子集为22=4个

12.D

13.B

14.B

15.B抛物线方程为y2=2px=2*4x,焦点坐标为(p/2,0)=(2,0),准线方程为x=-p/2=-2,则焦点到准线的距离为p/2-(-p/2)=p=4。

16.A

17.D

18.D三角函数的定义.记P(-4,3),则x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5

19.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。

20.A

21.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

22.3/49

23.

。a-b=(2,1),所以|a-b|=

24.33

25.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

26.12,高三年级应抽人数为300*40/1000=12。

27.(-7,±2)

28.

29.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

30.-1,

31.

32.

33.

34.

35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

36.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

37.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

38.(1)(2)

39.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

40.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

41.

42.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

43.

44.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

45.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

46.

∴PD//平面ACE.

47.

48.

49.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

50.

51.证明:根据该几何体的特征,可知所剩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论