2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山西省大同市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1/x,则f(-1)=()A.2B.1C.0D.-2

2.拋掷两枚骰子,两次点数之和等于5的概率是()A.

B.

C.

D.

3.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

4.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

5.下列函数中,既是奇函数又是增函数的是A.B.C.D.y=3x

6.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

7.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}

8.A.0

B.C.1

D.-1

9.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23

10.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4

二、填空题(10题)11.过点A(3,2)和点B(-4,5)的直线的斜率是_____.

12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.

13.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.

14.

15.

16.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

17.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

18.己知0<a<b<1,则0.2a

0.2b。

19.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

20.cos45°cos15°+sin45°sin15°=

三、计算题(5题)21.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

22.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

25.解不等式4<|1-3x|<7

四、简答题(10题)26.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

27.由三个正数组成的等比数列,他们的倒数和是,求这三个数

28.化简

29.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

30.化简

31.求证

32.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

33.计算

34.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

35.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

五、解答题(10题)36.

37.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

38.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

39.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

40.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

41.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

42.

43.己知sin(θ+α)=sin(θ+β),求证:

44.已知椭圆C的重心在坐标原点,两个焦点的坐标分别为F1(4,0),F2(-4,0),且椭圆C上任一点到两焦点的距离和等于10.求:(1)椭圆C的标准方程;(2)设椭圆C上一点M使得直线F1M与直线F2M垂直,求点M的坐标.

45.

六、单选题(0题)46.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个

参考答案

1.D函数的奇偶性.由题意得f(-1)=-f(1)=-(1+1)=-2

2.A

3.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C

4.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

5.D

6.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

7.B由题可知AB={3,4,5},所以其补集为{1,2,6,7}。

8.D

9.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.

10.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.

11.

12.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.

13.

利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-

14.10函数值的计算.由=3,解得a=10.

15.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

16.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

17.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

18.>由于函数是减函数,因此左边大于右边。

19.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

20.

21.

22.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

23.

24.

25.

26.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

27.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

28.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

29.

30.

31.

32.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

33.

34.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

35.

36.

37.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4为首项,2为公比的等比数列,其通项公式为bn=5/4×2n-1=5×2n-3.

38.C

39.

40.

41.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论