电子开题报告_第1页
电子开题报告_第2页
电子开题报告_第3页
电子开题报告_第4页
电子开题报告_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经典word整理文档,仅参考,双击此处可删除页眉页脚。本资料属于网络整理,如有侵权,请联系删除,谢谢!毕业设计(论文)材料之二(2)本科毕业设计论文开题报告题目:基于单片机的电子万年历设计课题类设计□实验研究□论文□学生姓学专业班班学指导教开题时4年月日本科毕业论文开题报告一:研究意义、研究现状和发展趋势1.1研究意义字闹钟等等。能仪表、实时工控、通讯设备、导航系统、家用电器等,这些都离不开单片机。求,也是大学期间的必修课。单片机在多功能数字钟中的应用已是非常普遍的,还是现实生活中都离不开它,它是集CPU,RAM,ROM,定时,计数和多接口于一体的微控制器。它体积小,成本低,功能强大,广泛应用于智能产业和工业自动行定时、校时功能。开放性和可发挥性,对制作者的要求比较高,不仅考察了对单片机的掌握能力,更加强调了对单片机扩展的应用,而且要求设计的电子万年历在操作上力求简洁,功能上尽量齐全,显示界面也要出色。通过此次论文设计,提高对单片机的认识,进一步熟悉和掌握单片机的结构及工作原理;提高焊接、布局、电路检查能力;通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术,提高软件设计、调试能力;通过完成一个实际电子产品从电路设计、程序开发、系统调试的完整过程,熟悉以单片机核心的应用系统开发的全过程,掌握硬件电路设计的基本方法和技术,掌握相关电路参数的计算方法。通过此毕业课题打下基础。所以,电子万年历的制作作为毕业设计很有价值。1.2国内外研究现状及发展趋势随着科技的快速发展,时间的流逝,至从观太阳、摆钟到现在电子钟,人是采用数字电路实现的,电路复杂,精确度差,每天都需要调时,由于数字集成家居用品。基于单片机的时间核设计,主要是利用现代电子技术将时钟电子化、数字化。与传统的机械钟相比,具有时钟精确、显示直观、无机械传动装置等优点,因而得到广泛应用。另外,在生活和工农业生产中,人们对电子时钟的功能又提出了诸多要求:闹钟、日历、温度显示,这就需要电子时钟的多功能性。美国DALLAS公司推出的具有涓细电流充电能的低功耗实时时钟电路DS1302。它可以对年、月、日、周日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小。对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。该电路采用AT89S52单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。使万年历除了原有的显示时间,日期等基本功能外,还具有闹铃,报警等功能。设计,使其更加的具有市场。二:研究方案及工作计划2.1研究方案单一,不能满足人们日常生活需求。本文提出了一种基于AT89S52单片机的万AT89S52DS1302时钟芯片实现时钟,DS1302芯片是一种高性能的时钟芯片,可自动对秒、分、时、日、周、,位的RAM作电压2.5V~5.5V2.5V时耗电小于300nA。与按键、LED显示等模块组成硬件系统。在硬件系统中设有独立按键,能显示年、月、日、时、分、秒及星期等信息,综上所述,此万年历具有读取方便,显示直观,功能多样,电路简采用89S52芯片作为硬件核心,本设计采用的是AT89S52单片机,该单片机采用的MCU51内核,因此具有很好的兼容性,内部带有8KB的ROM,能够ISP便。用LEDLED寿命长、体积小、操作简单、资源占用较少、能在低电压、小电流条件下驱动发光、发光响应时间极短等优点。而且LED数码管价格适中,对于显示数字合适,且采用动态扫描法与单片机连接时,占用单片机接口线少。发光二极管LED是能将电信号转换成光信号的发光器件,7段LED数码管则是在一定形状的绝缘材料上,利用单只LED组合排列成的“8型,分别引出它们的电极,点亮相应的笔段来显示出0-9用74HC595芯片驱动LED有以下特点:速度较快,功耗较小,LED的数目多少随意,既可以控制共阴极的LED显示器,也可以控制共阳极的LED显示器,可以软件控制LED的亮度,还可以在必要的时候关断显示(数据保留),以减小功耗,并可随时唤醒显示。用它设计的电路,不仅软硬件设计简单,而且功耗低,驱动能力强,占用的I/O口线较少,是一种造价低廉,应用灵活的设计方案。采用DS1302时钟芯片实现时钟,DS1302芯片是一种高性能的时钟芯片,RAM作为数据暂存区,工作电压2.5V~5.5V范围内,2.5V时耗电小于300mA。键可对万年历时间设置进行移位和确认,加一键是对相应调整位进行加一操作独立式键盘。独立式键盘是指直接用I/O口线构成的单个按键电路。独立式按键精度高,成本低,易于制作研究。2.1.1硬件结构图阳历年、月、日74HA(一共八位数C595T89S5274HC59时、分、秒、星期(一共七位数码管)的位控制5DS130274HC595控制农历的月、日(一共四位数码管)的位控制74HC595驱动所在位的段码显示的数(1)Ds1302与单片机(at89s52)连线vccvcc1P1.6x2I/OGNDRSTP1.7(2)五个个按键与单片机连线及作用(P1.0)K1:确定需调整的部分(依次为年~月~周日~时~分~秒)(P1.1)K2:在K1确定的部分作+1处理(P1.2)K3:在K1确定的部分作-1处理(P1.3)K4:完成设置并退出按键中断程序(P1.4)K5(3)四个74HC595驱动数码管与单片机连线(P2.0输入)第一个74HC595驱动显示所在位的断码显示的数字(P2.1输入)第二个74HC595驱动位控制(控制阳历年、月、日(一共八位)的位选信号)(P2.274HC595的位选信号)(P2.3输入)第四个74HC595驱动位控制(控制农历的月、日(一共四位)的位选信号)2.1.2软件流程图软件设计部分主要是运用程序完成时间现实和定时输出判断功能。而年月程序中完成。本设计利用数量较少的芯片制作了一个运用简单的电子万年历。2.2工作计划第1-4周:积累资料,统计分析,写出可行性开题报告;第5-6第6-8周:设计电子万年历硬件框图并焊接;第9-10周:设计系统软件结构并编写程序;第11-12周:检查硬件,调试软件;第13周:将软件载入到硬件内进行最后的调试。第14周:写出论文集,申请结题;第15周:打印和装订论文,模拟答辩。三:参考文献[1]张元良.单片机原理及应用教程[M].北京:清华大学出版社.[2]刘娟.单片机C语言与PROTUES仿真技能实训[M]..[3]朱定华.数字电路与逻辑设计[M].北京:清华大学出版社.[4]谭浩强.C语言程序设计[M].北京:清华大学出版社.[5]张洪润,廖勇明,王德超.模拟电路与数字电路[M].北京:清华大学出版社.[6]鲁广英.基于单片机电子万年历的设计与实现[J].硅谷,2010(1257,77.[7]蒋敏,单片微机万年历设计[J].职大学报2002年第2期.[8]陈阳海.单片机的典型结构及AT89S5X系列单片机[J].2006,1.[9]MauriceWilkes.ProgressinComputers.ComputerLaboratory:UniversityofCambridge.[10]W.Simpson,Editor,ThePoint-to-PointProtocol,RFC1661[EB/OL].July1994.CommandsInterfaceGuide,Revision002[EB/OL].6thNovember2003.[12]滕振芳,张昆.基于单片机的电子万年历设计[J].价值工程,2010,29(6):63-63.[13]郭晓林.基于单片机的电子时钟设计[J].中国科技博览,2010.(9).[14].基于单片机的多功能时钟控制电路[J].2009,22(3).[15].单片机控制系统的抗干扰措施[J].烟台职业学院学报,2006,12(244-47.[16].串行时钟芯片DS1302的原理与使用[J].信息技术与信息化,2006,1.附录:英文文献及其翻译ProgressinComputersPrestigeLecturedeliveredtoIEE,Cambridge,on5February2004MauriceWilkesComputerLaboratoryUniversityofCambridgeThesingle-chipcomputerAteachshrinkagethenumberofchipswasreducedandtherewerefewerwiresgoingfromonechiptoanother.Thisledtoanadditionalincrementinoverallspeed,sincethetransmissionofsignalsfromonechiptoanothertakesalongtime.Eventually,shrinkageproceededtothepointatwhichthewholeprocessorexceptforthecachescouldbeputononechip.Thisenabledaworkstationtobebuiltthatout-performedthefastestminicomputeroftheday,andtheresultwastokilltheminicomputerstonedead.Asweallknow,thishadsevereconsequencesforthecomputerindustryandforthepeopleworkinginit.FromtheabovetimethehighdensityCMOSsiliconchipwasCockoftheRoost.Shrinkagewentonuntilmillionsoftransistorscouldbeputonasinglechipandthespeedwentupinproportion.Processordesignersbegantoexperimentwithnewarchitecturalfeaturesdesignedtogiveextraspeed.Oneverysuccessfulexperimentconcernedmethodsforpredictingthewayprogrambrancheswouldgo.Itwasasurprisetomehowsuccessfulthiswas.ItledtoasignificantspeedingupofprogramexecutionandotherformsofpredictionfollowedEquallysurprisingiswhatithasbeenfoundpossibletoputonasinglechipcomputerbywayofadvancedfeatures.Forexample,featuresthathadbeendevelopedfortheIBMModel91.thegiantcomputeratthetopoftheSystem360range.arenowtobefoundonmicrocomputersMurphysLawremainedinastateofsuspension.Nolongerdiditmakesensetobuildexperimentalcomputersoutofchipswithasmallscaleofintegration,suchasthatprovidedbythe7400series.Peoplewhowantedtodohardwareresearchatthecircuitlevelhadnooptionbuttodesignchipsandseekforwaystogetthemmade.Foratime,thiswaspossible,ifnoteasyUnfortunately,therehassincebeenadramaticincreaseinthecostofmakingchips,mainlybecauseoftheincreasedcostofmakingmasksforlithography,aphotographicprocessusedinthemanufactureofchips.Ithas,inconsequence,againbecomeverydifficulttofinancethemakingofresearchchips,andthisisacurrentlycauseforsomeconcern.TheSemiconductorRoadMapTheextensiveresearchanddevelopmentworkunderlyingtheaboveadvanceshasbeenmadepossiblebyaremarkablecooperativeeffortonthepartoftheinternationalsemiconductorindustry.AtonetimeUSmonopolylawswouldprobablyhavemadeitillegalforUScompaniestoparticipateinsuchaneffort.Howeverabout1980significantandfarreachingchangestookplaceinthelaws.Theconceptofpre-competitiveresearchwasintroduced.Companiescannowcollaborateatthepre-competitivestageandlatergoontodevelopproductsoftheirownintheregularcompetitivemanner.Theagentbywhichthepre-competitiveresearchinthesemi-conductorindustryismanagedisknownastheSemiconductorIndustryAssociation(SIA).ThishasbeenactiveasaUSorganisationsince1992anditbecameinternationalin1998.Membershipisopentoanyorganisationthatcancontributetotheresearcheffort.EverytwoyearsSIAproducesanewversionofadocumentknownastheInternationalTechnologicalRoadmapforSemiconductors(ITRS),withanupdateintheintermediateyears.Thefirstvolumebearingthetitle„Roadmap‟wasissuedin1994buttworeports,writtenin1992anddistributedin1993,areregardedasthetruebeginningoftheseries.Successiveroadmapsaimatprovidingthebestavailableindustrialconsensusonthewaythattheindustryshouldmoveforward.Theysetoutingreatdetail.overa15yearhorizon.thetargetsthatmustbeachievedifthenumberofcomponentsonachipistobedoubledeveryeighteenmonths.thatis,ifMoore‟slawistobemaintained.-andifthecostperchipistofall.Inthecaseofsomeitems,thewayaheadisclear.Inothers,manufacturingproblemsareforeseenandsolutionstothemareknown,althoughnotyetfullyworkedout;theseareasarecolouredyellowinthetables.Areasforwhichproblemsareforeseen,butforwhichnomanufacturablesolutionsareknown,arecolouredred.RedareasarereferredtoasRedBrickWalls.ThetargetssetoutintheRoadmapshaveprovedrealisticaswellaschallenging,andtheprogressoftheindustryasawholehasfollowedtheRoadmapsclosely.Thisisaremarkableachievementanditmaybesaidthatthemeritsofcooperationandcompetitionhavebeencombinedinanadmirablemanner.Itistobenotedthatthemajorstrategicdecisionsaffectingtheprogressoftheindustryhavebeentakenatthepre-competitivelevelinrelativeopenness,ratherthanbehindcloseddoors.Theseincludetheprogressiontolargerwafers.By1995,Ihadbeguntowonderexactlywhatwouldhappenwhentheinevitablepointwasreachedatwhichitbecameimpossibletomaketransistorsanysmaller.MyenquiriesledmetovisitARPAheadquartersinWashingtonDC,whereIwasgivenacopyoftherecentlyproducedRoadmapfor1994.Thismadeitplainthatseriousproblemswouldarisewhenafeaturesizeof100nmwasreached,aneventprojectedtohappenin2007,with70nmfollowingin2010.Theyearforwhichthecomingof100nm(orrather90nm)wasprojectedwasinlaterRoadmapsmovedforwardto2004andintheeventtheindustrygottherealittlesooner.Ipresentedtheaboveinformationfromthe1994Roadmap,alongwithsuchotherinformationthatIcouldobtain,inalecturetotheIEEinLondon,entitledTheCMOSend-pointandrelatedtopicsinComputinganddeliveredon8February1996.TheideathatIthenhadwasthattheendwouldbeadirectconsequenceofthenumberofelectronsavailabletorepresentaonebeingreducedfromthousandstoafewhundred.Atthispointstatisticalfluctuationswouldbecometroublesome,andthereafterthecircuitswouldeitherfailtowork,oriftheydidworkwouldnotbeanyfaster.Infactthephysicallimitationsthatarenowbeginningtomakethemselvesfeltdonotarisethroughshortageofelectrons,butbecausetheinsulatinglayersonthechiphavebecomesothinthatleakageduetoquantummechanicaltunnellinghasbecometroublesome.Therearemanyproblemsfacingthechipmanufacturerotherthanthosethatarisefromfundamentalphysics,especiallyproblemswithlithography.Inanupdatetothe2001Roadmappublishedin2002,itwasstatedthatthecontinuationofprogressatpresentratewillbeatriskasweapproach2005whentheroadmapprojectsthatprogresswillstallwithoutresearchbreak-throughsinmosttechnicalareas“.ThiswasthemostspecificstatementabouttheRedBrickWall,thathadsofarcomefromtheSIAanditwasastrongone.The2003Roadmapreinforcesthisstatementbyshowingmanyareasmarkedred,indicatingtheexistenceofproblemsforwhichnomanufacturablesolutionsareknown.Itissatisfactorytoreportthat,sofar,timelysolutionshavebeenfoundtoalltheproblemsencountered.TheRoadmapisaremarkabledocumentand,forallitsfranknessabouttheproblemsloomingabove,itradiatesimmenseconfidence.Prevailingopinionreflectsthatconfidenceandthereisageneralexpectationthat,byonemeansoranother,shrinkagewillcontinue,perhapsdownto45nmorevenless.However,costswillrisesteeplyandatanincreasingrate.Itiscostthatwillultimatelybeseenasthereasonforcallingahalt.Theexactpointatwhichanindustrialconsensusisreachedthattheescalatingcostscannolongerbemetwilldependonthegeneraleconomicclimateaswellasonthefinancialstrengthofthesemiconductorindustryitself.。Insulatinglayersinthemostadvancedchipsarenowapproachingathicknessequaltothatof5atoms.Beyondfindingbetterinsulatingmaterials,andthatcannottakeusveryfar,thereisnothingwecandoaboutthis.Wemayalsoexpecttofaceproblemswithon-chipwiringaswirecrosssectionsgetsmaller.Thesewillconcernheatdissipationandatommigration.Theaboveproblemsareveryfundamental.Ifwecannotmakewiresandinsulators,wecannotmakeacomputer,whateverimprovementstheremaybeintheCMOSprocessorimprovementsinsemiconductormaterials.Itisnogoodhopingthatsomenewprocessormaterialmightrestartthemerry-go-roundofthedensityoftransistorsdoublingeveryeighteenmonths.Isaidabovethatthereisageneralexpectationthatshrinkagewouldcontinuebyonemeansoranotherto45nmorevenless.WhatIhadinmindwasthatatsomepointfurtherscalingofCMOSasweknowitwillbecomeimpracticable,andtheindustrywillneedtolookbeyondit.Since2001theRoadmaphashadasectionentitledemergingresearchdevicesonnon-conventionalformsofCMOSandthelike.Vigorousandopportunistexploitationofthesepossibilitieswillundoubtedlytakeusausefulwayfurtheralongtheroad,buttheRoadmaprightlydistinguishessuchprogressfromthetraditionalscalingofconventionalCMOSthatwehavebeenusedto.AdvancesinMemoryTechnologyUnconventionalCMOScouldrevolutionalizememorytechnology.Uptonow,wehavereliedonDRAMsformainmemory.Unfortunately,theseareonlyincreasinginspeedmarginallyasshrinkagecontinues,whereasprocessorchipsandtheirassociatedcachememorycontinuetodoubleinspeedeverytwoyears.Theresultisagrowinggapinspeedbetweentheprocessorandthemainmemory.Thisisthememorygapandisacurrentsourceofanxiety.Abreakthroughinmemorytechnology,possiblyusingsomeformofunconventionalCMOS,couldleadtoamajoradvanceinoverallperformanceonproblemswithlargememoryrequirements,thatis,problemswhichfailtofitintothecache.Perhapsthis,ratherthanattainingmarginallyhigherbasisprocessorspeedwillbetheultimaterolefornon-conventionalCMOS.ShortageofElectronsAlthoughshortageofelectronshasnotsofarappearedasanobviouslimitation,inthelongtermitmaybecomeso.Perhapsthisiswheretheexploitationofnon-conventionalCMOSwillleadus.However,someinterestingworkhasbeendone.notablybyHaroonAmedandhisteamworkingintheCavendishLaboratory.onthedirectdevelopmentofstructuresinwhichasingleelectronmoreorlessmakesthedifferencebetweenazeroandaone.Howeververylittleprogresshasbeenmadetowardspracticaldevicesthatcouldleadtotheconstructionofacomputer.Evenwithexceptionallygoodluck,manytensofyearsmustinevitablyelapsebeforeaworkingcomputerbasedonsingleelectroneffectscanbecontemplated.微机发展简史IEEE的论文剑桥大学,2004/2/5莫里斯威尔克斯计算机实验室剑桥大学单片机了整体速度的下降,因为信号在各个芯片间的传输时间变长了。的影响自从上述时代的开始,高密度CMOS硅芯片成为主导。随着芯片的缩小技增加。惊奇。它导致了程序执行速度的增加并且其相应的框架。同样令人惊奇的是,通过更高级的特性建立一种单片机是有可能的。例如,为IBMModel91开发的新特性,现在在单片机上也出现了。M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论