




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年贵州省遵义市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-5
2.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.1
3.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
4.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8
5.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
6.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2
B.f(x)=x2+1
C.f(x)=x3
D.f(x)-2-x
7.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切
8.要得到函数y=sin2x的图像,只需将函数:y=cos(2x-π/4)的图像A.向左平移π/8个单位B.向右平移π/8个单位C.向左平移π/4个单位D.向右平移π/4个单位
9.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.12
10.的展开式中,常数项是()A.6B.-6C.4D.-4
11.已知等差数列{an}的前n项和为Sn,a4=2,S10=10,则a7的值为()A.0B.1C.2D.3
12.下列函数中是奇函数的是A.y=x+3
B.y=x2+1
C.y=x3
D.y=x3+1
13.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)
B.(4,0)(-4,0)
C.(3,0)(-3,0)
D.(7,0)(-7,0)
14.已知a=1.20.1,b=ln2,c=5-1/2,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.c>a>b
15.A.2B.1C.1/2
16.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}
17.若a>b.则下列各式正确的是A.-a>-b
B.C.D.
18.设i是虚数单位,则复数(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i
19.下列函数是奇函数的是A.y=x+3
B.C.D.
20.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
二、填空题(10题)21.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.
22.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.
23.
24.不等式(x-4)(x+5)>0的解集是
。
25.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
26.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.
27.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
28.当0<x<1时,x(1-x)取最大值时的值为________.
29.不等式|x-3|<1的解集是
。
30.
三、计算题(5题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
33.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(10题)36.已知是等差数列的前n项和,若,.求公差d.
37.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值
38.已知的值
39.化简
40.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
41.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
42.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
43.解不等式组
44.证明:函数是奇函数
45.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
五、证明题(10题)46.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
47.△ABC的三边分别为a,b,c,为且,求证∠C=
48.己知sin(θ+α)=sin(θ+β),求证:
49.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
50.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
52.
53.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
54.若x∈(0,1),求证:log3X3<log3X<X3.
55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
六、综合题(2题)56.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
57.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.
2.A同角三角函数的变换.若cosα=0,则sinα=0,显然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
3.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
4.C
5.C
6.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.
7.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。
8.B三角函数图像的性质.将函数y=cos(2x-π/4)向右平移π/8个单位,得到y=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x
9.B分层抽样方法.试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:40×6/30=8
10.A
11.A
12.C
13.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).
14.C对数函数和指数函数的单
15.B
16.C
17.C
18.C复数的运算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,
19.C
20.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
21.2/3两直线的位置关系.由题意得-2/a×(2a-1)=-1,解得a=2/3
22.
利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-
23.-16
24.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
25.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
26.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
27.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
28.1/2均值不等式求最值∵0<
29.
30.-7/25
31.
32.
33.
34.
35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
36.根据等差数列前n项和公式得解得:d=4
37.
38.
∴∴则
39.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
40.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
41.x-7y+19=0或7x+y-17=0
42.原式=
43.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
44.证明:∵∴则,此函数为奇函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高教版中职考试题及答案
- 甘肃平凉中考试题及答案
- 福安国企考试题及答案
- 犯罪意识考试题及答案大全
- 多格漫画考试题目及答案
- 2025农产品订购合同(小麦)
- 电梯司机考试题及答案
- 中国美司那项目创业计划书
- 2025年中国钛工业发展报告
- 点心厨师考试题目及答案
- 2025年国家开放大学《医学伦理学》期末考试备考题库及答案解析
- 2025年及未来5年中国网闸行业市场深度评估及投资战略规划报告
- 2025年安全生产有限空间作业事故案例分析试题库试卷
- 2025年制造业岗位招聘面试指南及模拟题答案
- 2025年电力工程师高级职称评审要点与面试题库及答案
- 给水管线施工保护专项方案
- 2025年湖南衡南县发展集团有限公司招聘12人备考考试题库附答案解析
- 2025年湖北省武汉市辅警(协警)招聘考试题库及答案
- 2025年汽车驾驶员(高级)理论考试试题及答案
- 2025年及未来5年中国锂电池叠片机行业市场深度分析及发展趋势预测报告
- 2025秋外研版英语三上教学设计- Welcome to school 教学设计
评论
0/150
提交评论