




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学课件常数项级数第一节第一页,共二十二页,2022年,8月28日常数项级数的概念和性质一、常数项级数的概念
二、无穷级数的基本性质三、级数收敛的必要条件
四、柯西收敛准则第一节
第十一章第二页,共二十二页,2022年,8月28日一、常数项级数的概念
引例1.
用圆内接正多边形面积逼近圆面积.依次作圆内接正边形,这个和逼近于圆的面积A.设a0
表示即内接正三角形面积,ak
表示边数增加时增加的面积,则圆内接正第三页,共二十二页,2022年,8月28日引例2.小球从1米高处自由落下,每次跳起的高度减少一半,问小球是否会在某时刻停止运动?说明道理.由自由落体运动方程知则小球运动的时间为(s)设
tk
表示第k
次小球落地的时间,第四页,共二十二页,2022年,8月28日定义:给定一个数列将各项依即称上式为无穷级数,其中第
n
项叫做级数的一般项,级数的前
n
项和称为级数的部分和.次相加,简记为收敛,则称无穷级数并称S
为级数的和,记作第五页,共二十二页,2022年,8月28日当级数收敛时,称差值为级数的余项.则称无穷级数发散.显然第六页,共二十二页,2022年,8月28日例1.讨论等比级数(又称几何级数)(q
称为公比)的敛散性.解:1)若从而因此级数收敛,从而则部分和因此级数发散.其和为第七页,共二十二页,2022年,8月28日2).若因此级数发散;因此n为奇数n为偶数从而综合1)、2)可知,时,等比级数收敛;时,等比级数发散.则级数成为不存在,因此级数发散.第八页,共二十二页,2022年,8月28日例2.
判别下列级数的敛散性:解:(1)所以级数(1)发散;技巧:利用“拆项相消”求和第九页,共二十二页,2022年,8月28日(2)所以级数(2)收敛,其和为1.技巧:利用“拆项相消”求和第十页,共二十二页,2022年,8月28日
例3.判别级数的敛散性.解:故原级数收敛,其和为第十一页,共二十二页,2022年,8月28日二、无穷级数的基本性质性质1.
若级数收敛于S,则各项乘以常数
c
所得级数也收敛,证:令则这说明收敛,其和为cS.
说明:级数各项乘以非零常数后其敛散性不变.即其和为cS.第十二页,共二十二页,2022年,8月28日性质2.
设有两个收敛级数则级数也收敛,其和为证:
令则这说明级数也收敛,其和为第十三页,共二十二页,2022年,8月28日说明:(2)若两级数中一个收敛一个发散,则必发散.但若二级数都发散,不一定发散.例如,
(1)性质2表明收敛级数可逐项相加或减.(用反证法可证)第十四页,共二十二页,2022年,8月28日性质3.在级数前面加上或去掉有限项,不会影响级数的敛散性.证:
将级数的前k项去掉,的部分和为数敛散性相同.当级数收敛时,其和的关系为类似可证前面加上有限项的情况.极限状况相同,故新旧两级所得新级数第十五页,共二十二页,2022年,8月28日性质4.
收敛级数加括弧后所成的级数仍收敛于原级数的和.证:
设收敛级数若按某一规律加括弧,则新级数的部分和序列为原级数部分和序列的一个子序列,推论:
若加括弧后的级数发散,则原级数必发散.注意:
收敛级数去括弧后所成的级数不一定收敛.但发散.因此必有例如,用反证法可证例如第十六页,共二十二页,2022年,8月28日例4.判断级数的敛散性:解:
考虑加括号后的级数发散,从而原级数发散.第十七页,共二十二页,2022年,8月28日三、级数收敛的必要条件
设收敛级数则必有证:
可见:若级数的一般项不趋于0,则级数必发散.例如,其一般项为不趋于0,因此这个级数发散.第十八页,共二十二页,2022年,8月28日注意:并非级数收敛的充分条件.例如,调和级数虽然但此级数发散.事实上
,假设调和级数收敛于S,则但矛盾!所以假设不真.参见教材P103另一证法第十九页,共二十二页,2022年,8月28日例5.
判断下列级数的敛散性,若收敛求其和:解:(1)令则故从而这说明级数(1)发散.第二十页,共二十二页
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康状况与工作履历证明书(7篇)
- 小区垃圾分类与环保管理协议
- 服装制造销售协议
- 知识产权转让许可使用协议详细内容说明
- 行政管理公文流转试题及答案
- 2025商业办公装饰装修施工合同范本
- 行政管理学的实施效果试题及答案
- 中国特色发展道路的世界历史比较研究
- 行政管理中的决策制定聚焦市政学试题及答案
- 行政管理师资格市政学试题及答案
- 2024年延安通和电业有限责任公司招聘笔试真题
- 液压油供应合同协议
- 2024年贵州省德江县事业单位公开招聘医疗卫生岗笔试题带答案
- 高考二轮专题复习:图文转换
- 2024年甘肃省大数据中心招聘工作人员笔试真题
- 崇左市人民检察院招聘机关文员笔试真题2024
- 2025-2030煤油产业规划专项研究报告
- (二模)2025年4月潍坊市高三高考模拟考试地理试卷(含答案)
- 香港劳务服务合同协议
- 园林喷洒器企业数字化转型与智慧升级战略研究报告
- GB/T 9065.2-2025液压传动连接软管接头第2部分:24°锥形
评论
0/150
提交评论