




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列计算,结果等于a4的是()A.a+3aB.a5﹣aC.(a2)2D.a8÷a22.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=13.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是()A. B.C. D.4.如图,从圆外一点引圆的两条切线,,切点分别为,,如果,,那么弦AB的长是()A. B. C. D.5.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁6.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y27.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.已知两点都在反比例函数图象上,当时,,则的取值范围是()A. B. C. D.9.如果,那么的值为()A.1 B.2 C. D.10.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.12.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.13.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).14.已知直线与抛物线交于A,B两点,则_______.15.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.16.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的长.18.(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.19.(8分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2.①求的值;②若点G为AE上一点,求OG+EG最小值.20.(8分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______件,每件盈利______元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.21.(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.22.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.23.(12分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18)1.901.00阶梯二18~25(含25)2.85阶梯三25以上5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议24.如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.(1)请判断四边形AEA′F的形状,并说明理由;(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.2、A【解析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.3、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;∵2018年比2017年增长7%,∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP年平均增长率为x%,∴2018年的国内生产总值也可表示为:,∴可列方程为:(1+12%)(1+7%)=.故选D.点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.4、C【解析】
先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.【详解】解:,PB为的切线,,,为等边三角形,.故选C.【点睛】本题考查切线长定理,掌握切线长定理是解题的关键.5、A【解析】
根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.6、A【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.7、A【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.8、B【解析】
根据反比例函数的性质判断即可.【详解】解:∵当x1<x2<0时,y1<y2,
∴在每个象限y随x的增大而增大,
∴k<0,
故选:B.【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.9、D【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】故选:D.【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.10、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、50°【解析】
先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).12、950【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x﹣19x=10.1x元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期间一天的销售收入为:19×50=950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.13、π+4【解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧长等于π.14、【解析】
将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x+x=-=,xx==-1”,将原代数式通分变形后代入数据即可得出结论.【详解】将代入到中得,,整理得,,∴,,∴.【点睛】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式15、70°【解析】
试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.故答案为70°.考点:角的计算;平行线的性质.16、相离【解析】
设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.【详解】设圆O的半径是r,则πr2=9π,∴r=3,∵点0到直线l的距离为π,∵3<π,即:r<d,∴直线l与⊙O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.三、解答题(共8题,共72分)17、(1)见解析;(2).【解析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长.作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.18、(1)(2)【解析】
(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【详解】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为.【点睛】本题主要考查了列表法与树状图法;概率公式.19、(1)证明见解析(2)①②3【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=3.故OG+EG最小值是3.【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.20、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】
(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40-x)=1200,解得:即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.21、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.【详解】(1)设m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)∴点P(x,y)到点A(0,1),∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,∴x2+(y﹣1)2=(y+1)2,∴(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),∴线段MN的中点为Q的纵坐标为∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴点Q到x轴的最短距离为1.【点睛】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.22、(1)50,360;(2).【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率23、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春考技能护理押题题库及答案
- 2025年护理专升本论述题题库及答案
- 放射科工作年度总结及质量提升计划
- 康复治疗方案设计与效果评估
- 高校毕业实习管理办法与实施细则
- 医疗机构质量管理相关法规试题集
- 物流仓库库存盘点制度
- 水利EPC项目技术文件编写规范
- 脑血管疾病医院商业运营策划方案
- 涂镀板行业现状及市场发展分析报告
- 《呼吸与健康生活》参考课件
- 前列腺剜除术手术技巧
- 妇婴医院护理技术操作新生儿气管内吸痰操作流程图与考核评分标准
- (完整版)韦氏儿童智力测试试题
- 机械制图-点线面教学课件
- 练习使用显微镜 全国公开课一等奖
- 2023年高考地理(上海卷)-含答案
- 比重式精选机的使用与维护
- GB/T 39554.1-2020全国一体化政务服务平台政务服务事项基本目录及实施清单第1部分:编码要求
- GB/T 2942-2009硫化橡胶与纤维帘线静态粘合强度的测定H抽出法
- 细胞培养技术培训课件
评论
0/150
提交评论