




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版•八下第十八章平行四边形18.1平行四边形18.1.2平行四边形的判定(3)主讲人:数学可以很简单学习目标1.理解三角形中位线的概念,掌握三角形的中位线定理.(重点)2.能利用三角形的中位线定理解决有关证明和计算问题.(重点)课前导入探索新知巩固练习课堂小结0102030401课前导入课前导入我们探索平行四边形时,常常转化为三角形,利用三角形的全等性质进行研究,今天我们一起来利用平行四边形来探索三角形的某些问题吧.如图,有一块三角形蛋糕,准备平分给四个小朋友,要求四人所分的形状大小相同,该怎样分呢?02探索新知三角形的中位线定理如图,△ABC中,D,E分别是边AB,AC的中点,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的中位线.A
B
C
D
E
一个三角形有几条中位线?三角形的中位线和中线一样吗?三角形的中位线定理ABCDEFE三角形的中位线定理探究
DE与BC之间有什么位置关系和数量关系?猜想:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.如何证明呢?三角形的中位线定理
三角形的中位线定理
三角形的中位线定理总结:三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.三角形的中位线定理练一练
1.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长.解:∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3.又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=2DF=6.03巩固练习巩固练习
1.如图,在△ABC中,D,E,F分别是AB,AC,BC的中点,以这些点为顶点,在图中,你能画出多少个平行四边形?为什么?解:能在图中画出3个平行四边形,如图,连接DE,EF,FD,则四边形BFED,DECF,DFEA即为所画的3个平行四边形.巩固练习2.如图,直线l1∥l2,在l1,l2上分别截取AD,BC,使AD=BC,连接AB,CD.AB和CD有什么关系?为什么?
巩固练习3.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.怎样测出A,B两点间的距离?根据是什么?解:分别取AC,BC的中点D,E,连接DE,并量出DE的长,则AB=2DE.根据三角形的中位线平行于三角形的第三边,且等于第三边的一半.巩固练习4.如图,平行四边形ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.
巩固练习5.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.巩固练习解:∵M、N、P分别是AD、BC、BD的中点,∴PN、PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC.∵AB=CD,∴PM=PN,∴△PMN是等腰三角形.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,
∠BPN=∠BDC=70°,∴∠MPN=∠MPD+(180°−∠NPB)=130°,∴∠PMN=(180°−130°)÷2=25°.巩固练习6.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E、F分别为A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑工程技术中级面试题及解析
- 2025年物联网高级职位面试技巧与模拟题
- 世界地图教学课件
- 2025年酒店管理实习生求职面试指南与模拟题集
- 电击伤急诊科处理
- 电催员基础知识培训课件
- 2025年初入金融行业人员面试模拟题及答案解析
- 血透护理教案
- 护理专业毕业论文范文
- 门脉高压病人护理
- 大连市甘井子区社区工作者招聘笔试真题2024
- 生产安全会议纪要
- 护理文书书写PDCA案例
- 哪个团队收益大+课件2025-2026学年+北师大版(2024)八年级数学上册
- 制作瓷器培训课件
- 初中情景教学法教案课件
- 旧物募捐活动方案
- 《中华人民共和国传染病防治法(2025年版)》解读
- 智慧城市建设的伦理考量与社会责任
- 幼儿发展评价手册使用培训
- 口腔门诊客服工作计划
评论
0/150
提交评论