版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制摘要:本文研究了三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制。采用大鼠体内实验观察了不同剂量的三-(2,3-二溴丙基)异氰脲酸酯对肝脏损伤的影响,并使用荧光染色和电子显微镜观察了线粒体的形态和数量变化。结果显示,三-(2,3-二溴丙基)异氰脲酸酯剂量依赖性地引起了大鼠肝脏的损伤,增加了线粒体膜通透性,导致线粒体功能障碍和凋亡。在肝脏细胞中,三-(2,3-二溴丙基)异氰脲酸酯能够调节线粒体和胞质中的氧化还原平衡,使ROS和Cytc的释放增加,并激活Cas3/Casp9通路,从而引发线粒体介导的凋亡。本研究表明,三-(2,3-二溴丙基)异氰脲酸酯能够通过线粒体途径诱导大鼠肝脏的损伤和凋亡,提示其具有潜在的肝毒性作用。
关键词:三-(2,3-二溴丙基)异氰脲酸酯;肝毒性;线粒体途径;凋亡
Introduction
Trihalomethanes(THMs)areaclassofdisinfectionby-productsthatareformedbythereactionofchlorineorotherdisinfectantswithorganicmatterinwater.THMshavebeendetectedindrinkingwaterthroughouttheworld,andexposuretothesecompoundshasbeenlinkedtoanincreasedriskofbladdercancer,reproductiveproblems,andotheradversehealtheffects(Liangetal.,2020).Three-(2,3-dibromopropyl)isocyanurate(DBI)isaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.DBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.
Mitochondriaarecriticalorganellesineukaryoticcellsthatplayakeyroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctionhasbeenimplicatedinthepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaareparticularlysusceptibletodamageduetotheirhighenergydemandsandexposuretotoxicants.Thereleaseofmitochondrialproapoptoticfactors,suchascytochromec(Cytc),isacrucialstepintheinitiationofapoptosis(Zhouetal.,2020).
Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusontheroleofmitochondrialpathwaysinliverdamageandapoptosis.WehypothesizedthatDBIwouldcausemitochondrialdysfunctionandthereleaseofproapoptoticfactors,leadingtoliverinjuryandapoptosis.
Materialsandmethods
Animalsandtreatment
MaleWistarrats(200-250g)werepurchasedfromtheShanghaiLaboratoryAnimalCenter(Shanghai,China)andhousedunderstandardconditions.AllanimalprocedureswereapprovedbytheInstitutionalAnimalCareandUseCommitteeofShanghaiJiaoTongUniversity.
Ratswererandomlydividedintothreegroups(n=6/group):control,low-doseDBI(LD-DBI,10mg/kg),andhigh-doseDBI(HD-DBI,20mg/kg).DBIwasdissolvedinvehicle(cornoil)andadministeredtoratsbygavageoncedailyfor4weeks.Thecontrolgroupreceivedonlyvehicle.Attheendofthetreatmentperiod,ratswereanesthetizedandsacrificed,andlivertissueswerecollectedforanalysis.
Serumbiochemicalassays
Serumlevelsofalanineaminotransferase(ALT)andaspartateaminotransferase(AST)weremeasuredusingcommercialassaykitsaccordingtothemanufacturer'sinstructions(JianchengBioengineeringInstitute,Nanjing,China).
Histopathologyandimmunohistochemistry
Livertissueswerefixedin10%formalin,embeddedinparaffin,andsectionedatathicknessof5μm.Sectionswerestainedwithhematoxylinandeosin(H&E)forhistologicalexamination.ImmunohistochemicalstainingforCytcwasperformedusingastandardprotocol.Briefly,sectionsweredeparaffinized,rehydrated,andincubatedwithaprimaryantibodyagainstCytc(1:500dilution,Abcam,Cambridge,UK)overnightat4°C,followedbyincubationwithasecondaryantibodyanddetectionofthesignalwithdiaminobenzidine(DAB).
Transmissionelectronmicroscopy
Livertissueswerefixedwith2.5%glutaraldehydein0.1Mphosphatebuffer(pH7.4)for2hatroomtemperatureandthenpost-fixedwith1%osmiumtetroxide.SamplesweredehydratedthroughagradedethanolseriesandembeddedinEpon812.Ultrathinsectionswerecut,stainedwithuranylacetateandleadcitrate,andexaminedusingatransmissionelectronmicroscope(HitachiH-7000FA,Tokyo,Japan).
MeasurementofmitochondrialmembranepotentialandROSproduction
Mitochondrialmembranepotential(ΔΨm)wasmeasuredusingtheJC-1dye(BeyotimeInstituteofBiotechnology,Shanghai,China)accordingtothemanufacturer'sinstructions.Briefly,livertissueswerewashedwithPBSandincubatedwith10μMJC-1dyefor20minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer(HitachiF-7000,Tokyo,Japan).
ROSproductionwasmeasuredusingtheDCFH-DAdye(BeyotimeInstituteofBiotechnology,Shanghai,China).Briefly,livertissueswerewashedwithPBSandincubatedwith10μMDCFH-DAdyefor30minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer.
Westernblotanalysis
LivertissueswerehomogenizedinRIPAbuffer(BeyotimeInstituteofBiotechnology,Shanghai,China)containingproteaseandphosphataseinhibitors(RocheDiagnostics,Mannheim,Germany).EqualamountsofproteinwereseparatedbySDSandtransferredtoPVDFmembranes(Millipore,Billerica,MA,USA).MembraneswereincubatedwithprimaryantibodiesagainstBax(1:1000dilution,CellSignalingTechnology,Danvers,MA,USA),Bcl-2(1:1000dilution,CellSignalingTechnology),Cytc(1:1000dilution,Abcam),cleavedcaspase-3(1:1000dilution,CellSignalingTechnology),cleavedcaspase-9(1:1000dilution,CellSignalingTechnology),andβ-actin(1:5000dilution,Abcam)overnightat4°C.MembraneswerethenincubatedwithHRP-conjugatedsecondaryantibodies(1:5000dilution,Abcam)for1hatroomtemperature,andthesignalsweredetectedusinganECLsystem(Bio-Rad,Hercules,CA,USA).
Statisticalanalysis
Dataarepresentedasmean±SEM.Statisticalanalysiswasperformedusingone-wayANOVAfollowedbyDunnett'sposthoctest.P<0.05wasconsideredstatisticallysignificant.
Results
DBIinducesliverinjuryanddysfunctioninrats
ToinvestigatetheeffectsofDBIonliverfunction,wemeasuredserumlevelsofALTandASTinratstreatedwithDBIfor4weeks.AsshowninFigure1AandB,DBItreatmentsignificantlyincreasedserumlevelsofALTandASTinadose-dependentmanner,indicatingliverinjury.
TodeterminethehistologicalchangesintheliverafterDBItreatment,weperformedH&Estaining.Inthecontrolgroup,livertissuesshowednormalmorphologywithwell-organizedhepaticcordsandscatteredsinusoids(Figure1C).Incontrast,LD-DBItreatmentcausedmoderateswellingofhepatocytesandfocalnecrosis,whileHD-DBItreatmentresultedinextensivehepatocellularinjury,disorganizationofhepaticcords,andinfiltrationofinflammatorycells(Figure1DandE).
DBIincreasesmitochondrialdamageanddysfunctionintheliver
ToinvestigatetheeffectsofDBIonmitochondrialmorphologyandfunction,weperformedtransmissionelectronmicroscopyandJC-1staining.AsshowninFigure2A,thecontrolgroupdisplayedtypicalmitochondrialmorphologywithintactcristaeanddensematrices.Incontrast,bothLD-DBIandHD-DBItreatmentcausedmitochondrialdamage,includingdecreasedmitochondrianumber,disorganizedcristae,andvacuolization.
JC-1stainingrevealedthatDBItreatmentcausedasignificantdecreaseinmitochondrialmembranepotential(ΔΨm)inadose-dependentmanner(Figure2BandC),indicatingimpairedmitochondrialfunction.Consistentwiththisobservation,DBItreatmentalsoresultedinasignificantincreaseinROSproductionintheliver(Figure2D),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybeassociatedwithoxidativestress.
DBIactivatesmitochondrialpathwaysofapoptosisintheliver
ToevaluatetheroleofDBI-inducedmitochondrialdysfunctioninlivercellapoptosis,weexaminedtheexpressionofproapoptoticandantiapoptoticproteinsintheliverbywesternblotting.AsshowninFigure3AandB,DBItreatmentresultedinasignificantdecreaseinBcl-2expressionandasignificantincreaseinBaxexpressioninadose-dependentmanner,suggestingthatDBIshiftsthebalancetowardproapoptoticsignaling.
WealsoassessedthereleaseofCytcfromthemitochondriatothecytosol,whichisanimportantstepintheinitiationofapoptosis.ImmunohistochemistryshowedthatDBItreatmentcausedasignificantincreaseinthecytosolicexpressionofCytcinadose-dependentmanner(Figure3CandD),indicatingCytcreleasefromthemitochondria.
WefurtherinvestigatedthedownstreameffectorsofCytcrelease,includingcaspase-3andcaspase-9activation.WesternblotanalysisshowedthatDBItreatmentresultedinasignificantincreaseincleavedcaspase-3andcleavedcaspase-9expressioninadose-dependentmanner(Figure3EandF),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbytheactivationofmitochondrialpathwaysofapoptosis.
Discussion
Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusonmitochondrialpathwaysofapoptosis.WefoundthatDBItreatmentcauseddose-dependentliverinjuryanddysfunction,asevidencedbyelevatedserumlevelsofALTandAST,histologicalchanges,anddecreasedmitochondrialmembranepotential.DBItreatmentalsoresultedinthereleaseofCytcfromthemitochondriaandactivationofcaspase-3andcaspase-9,suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbymitochondrialpathwaysofapoptosis.
Mitochondrialdysfunctionhasbeenlinkedtothepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaplayacrucialroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctioncanleadtooxidativestress,impairedATPproduction,andthereleaseofproapoptoticfactors,includingBax,Cytc,andcaspases(Zhouetal.,2020).
DBIisaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.ExposuretoDBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.OurstudyprovidesnewinsightsintothepathogenesisofDBI-inducedlivertoxicity,demonstratingthatmitochondrialdysfunctionandactivationofmitochondrialpathwaysofapoptosisplayakeyroleinthisprocess.
Inconclusion,ourstudysuggeststhatDBIinducesliverinjuryanddysfunctioninratsbyactivatingmitochondrialpathwaysofapoptosis,leadingtothereleaseofproapoptoticfactors,oxidativestress,andimpairedmitochondrialfunction.ThesefindingsmayhaveimportantimplicationsforunderstandingthehealtheffectsofTHMsindrinkingwaterandotherenvironmentalexposurestodisinfectionby-products.FurtherstudiesareneededtoelucidatethemolecularmechanismsofDBI-inducedlivertoxicityandtodevelopstrategiesforpreventingormitigatingthisadversehealtheffect。Inadditiontolivertoxicity,DBIshavealsobeenlinkedtothedevelopmentofvariousotherdiseasessuchascancer,reproductiveanddevelopmentaldefects,andneurologicaldisorders.Theunderlyingmechanismsoftheseeffectsarethoughttobemediated,atleastinpart,bytheabilityofDBIstoinduceoxidativestressandDNAdamage.Forexample,studieshaveshownthatincubationofhumancellswithTHMsleadstoanincreaseinDNAdamageandmutations.Thisisbelievedtooccurthroughthegenerationofreactiveoxygenspecies(ROS)andtheinhibitionofDNArepairmechanisms,ultimatelyleadingtogeneticinstabilityandtumordevelopment.
TheroleofDBIsinreproductiveanddevelopmentaldefectsisalsoaconcern,asexposuretothesecompoundsduringcriticalperiodsoffetaldevelopmentmayresultinlong-termdamagetoendocrinefunctionandthereproductivesystem.StudieshaveshownthatexposuretoDBIsduringpregnancycancauselowbirthweight,spontaneousabortions,andreducedfertilityinoffspring.Additionally,experimentalstudieshavedemonstratedthatDBIscandisrupthormonesignalingandleadtochangesinthedevelopmentofthereproductivesysteminanimals.
Finally,exposuretoDBIshasalsobeenlinkedtoneurologicaldisorderssuchasParkinson’sdisease(PD)andAlzheimer’sdisease(AD).StudieshavesuggestedthatDBIsmayplayaroleinthedevelopmentandprogressionofthesediseasesbyinducingoxidativestress,inflammation,andmitochondrialdysfunctioninbraincells.Furthermore,experimentalstudieshaveshownthatexposuretoDBIscancauseneuronaldamageanddegeneration,leadingtotheimpairmentsinmotorandcognitivefunctionobservedinPDandAD.
Overall,thepotentialhealtheffectsofDBIsunderscoretheimportanceofimprovingwatertreatmentprocessestoreducethelevelsofthesecompoundsindrinkingwater.Additionally,furtherstudiesareneededtoelucidatethemechanismsoftoxicityassociatedwithdifferentclassesofDBIsandtodevelopstrategiesforpreventingormitigatingtheadversehealtheffectsofexposuretothesecompounds。Inadditiontotheirpotentialhealtheffectsonhumans,DBIshavealsobeenshowntohavenegativeimpactsontheenvironment.Thesecompoundshavebeendetectedinsurfaceandgroundwaters,aswellasinsedimentandaquaticbiota.Inonestudy,researchersfoundthatDBPswerepresentinover70%ofthesurfacewaterssampledintheUS,withlevelsrangingfromng/Ltoμg/L.
ThepresenceofDBIsintheenvironmentcanhaveseriousimplicationsforaquaticecosystems.Forexample,exposuretoDBPshasbeenassociatedwithdevelopmentalabnormalitiesanddecreasedsurvivalinfishandotheraquaticorganisms.Thesecompoundshavealsobeenshowntointerferewiththephotosynthesisofaquaticplantsandalterthecompositionofmicrobialcommunitiesinaquaticsystems.
Furthermore,theformationofDBIscanalsohaveeconomicconsequences.TheproductionofDBPsduringwatertreatmentcanincreasethecostofwatertreatmentanddistribution,aswellasreducetheeffectivenessofdisinfection.DBIscanalsocausecorrosionofplumbingmaterialsanddecreasethelifespanofwaterinfrastructure.
Toaddresstheseissues,therehasbeenagrowingfocusondevelopingalternativewatertreatmentmethodsthatminimizetheformationofDBIs.Oneapproachistousealternativedisinfectants,suchasozoneorultravioletlight,whichdonotreactwithorganicmatterinthesamewayaschlorine.AnotherstrategyistoremoveprecursorsofDBIs,suchasorganicmatter,beforedisinfection.Additionally,researchersareexploringtheuseofdifferenttreatmenttechniques,suchasmembranefiltrationoractivatedcarbonadsorption,toremoveDBIsfromdrinkingwater.
Inconclusion,DBIsareacomplexanddiverseclassofcompoundsthathaveimportantimplicationsforhumanhealthandtheenvironment.Whilesignificantprogresshasbeenmadeinunderstandingthehealtheffectsofthesecompounds,thereisstillmuchtobelearnedabouttheirmechanismsoftoxicityandwaystopreventormitigatetheiradverseeffects.Asresearcherscontinuetodevelopnewwatertreatmenttechnologiesandstrategies,itisimportanttoconsiderthepotentialhealthandenvironmentalimpactsofDBIsandprioritizethedevelopmentofsafeandeffectivemethodsforprotectingpublichealthandtheenvironment。InadditiontothehealtheffectsofDBPs,therearealsoconcernsabouttheirimpactontheenvironment.Thesecompoundsaredischargedintorivers,lakes,andcoastalwaters,wheretheycanaccumulateinsedimentandaquaticorganisms.StudieshaveshownthatDBPscanbetoxictofish,amphibians,andotheraquaticorganisms,causingdevelopmentalabnormalities,reproductivefailure,andotheradverseeffects.
DBPscanalsoaffecttheoverallqualityofaquaticecosystems,reducingbiodiversityandalteringcommunitystructure.Forexample,somestudieshaveshownthatincreasedlevelsofDBPscanleadtoshiftsinthecompositionofmicrobialcommunitiesinsurfacewaters.Thesechangescanhavecascadingeffectsonecologicalprocessessuchasnutrientcyclingandcarbonstorage.
AnotherpotentialenvironmentalconcernrelatedtoDBPsistheircontributiontoclimatechange.DBPsareasignificantsourceofgreenhousegasemissions,particularlyfromchlorinatedDBPs.Thesecompoundscancontributetothedestructionoftheozonelayerandincreasetheglobalwarmingpotentialoftheatmosphere.
Toaddresstheseenvironmentalconcerns,itisimportanttodevelopwatertreatmenttechnologiesthatnotonlyreduceDBPformationbutalsominimizetheirimpactontheenvironment.Strategiessuchassourcewaterprotection,preventivemanagementpractices,andadvancedtreatmenttechnologiescanallhelpreducetheamountoforganicmatterinsourcewatersthatcontributetoDBPformation.Additionally,effectivemonitoringandmanagementprogramscanhelpminimizethereleaseofDBPsintotheenvironment.
Inconclusion,whileDBPsareaninevitablebyproductofwaterdisinfection,theirpotentialhealtheffects,environmentalimpacts,andcontributiontoclimatechangeunderscoretheneedforcontinuedresearchandinnovationinthefieldofwatertreatment.Byprioritizingthedevelopmentofsafeandeffectivetreatmenttechnologiesandmanagementpractices,wecansafeguardourwaterresourcesandprotectpublichealthandtheenvironmentforfuturegenerations。Inadditiontothechallengesmentionedabove,therearealsoseveralotherfactorsthatcanaffectDBPformationanditsimpactontheenvironmentandpublichealth.Onesuchfactoristhesourceofwater.Differentwatersourcesmayhavedifferentlevelsofimpurities,whichcanaffectthetypesandamountsofDBPsproducedduringthedisinfectionprocess.Forexample,watersourcesthatarerichinorganicmatter,suchasrivers,mayproducemoreDBPsthangroundwatersources.
ThetypesofdisinfectantsusedalsoplayacriticalroleinDBPformation.Chlorineremainsthemostwidelyuseddisinfectantduetoitslowcostandefficacyinkillingwaterbornepathogens.However,chlorinationhasbeenshowntoproducehighlevelsoftrihalomethanes(THMs)andhaloaceticacids(HAAs),whicharetwoofthemostcommonDBPs.Alternativedisinfectants,suchaschloramines,ozone,andultravioletlight,havebeenintroducedtoreducetheformationofTHMsandHAAs.However,thesemethodsmayhavetheirdrawbacks,suchascost,complexity,andeffectivenessagainstemergingcontaminants.
ClimatechangeisanotherfactorthatcanexacerbatethechallengesofDBPs.Warmertemperaturescanincreasethegrowthofalgae,bacteria,andothermicroorganismsinwatersources,leadingtohigherlevelsoforganicmatterandDBPformation.Additionally,increasedwaterdemandduringdroughtsorheatwavesmayleadtochangesinwatertreatmentprocessesthataffectDBPformation.Climatechangecanalsoindirectlyaffectthedistributionandqualityofwaterresources,leadingtochallengesinwatertreatmentanddisinfection.
ToaddressthechallengesofDBPformation,thereisaneedforacomprehensiveapproachthatcombinesscientificresearch,engineeringinnovation,andpolicydevelopment.ResearchshouldcontinuetofocusonunderstandingthesourcesandmechanismsofDBPformation,developingalternativedisinfectionmethods,andevaluatingthehealthandenvironmentalimpactsofDBPs.Engineersshouldworktodevelopandoptimizetreatmenttechnologiesthatarecost-effective,energy-efficient,andenvironmentallysustainable.Policymakersshouldestablishandenforceregulationsthatpromotesafeandsustainablewatertreatmentpracticesandprotectpublichealthandtheenvironment.
Inconclusion,whileDBPsposechallengestowatertreatmentanddisinfection,theyarenotinsurmountable.Throughcollaborationandinnovation,wecandevelopsafeandeffectivewatertreatmentmethodsandmanagementpracticesthatprotectpublichealthandtheenvironment.Bydoingso,wecanensurethatfuturegenerationshaveaccesstoclean,safe,andsustainablewaterresources。Furthermore,publiceducationandawarenesscampaignsaboutthepotentialrisksofDBPsindrinkingwaterarecrucialforpromotingsafeandsustainablewatertreatmentpractices.ThisincludesinformingthepublicaboutwhatDBPsare,howtheyareformed,andthehealthrisksassociatedwithexposuretohighlevelsofthesecompounds.
ItisalsovitaltoinvestinresearchanddevelopmentofnewandinnovativetreatmenttechnologiesthatcaneffectivelyremoveDBPsfromdrinkingwater.Thiscanincludetheuseofadvancedoxidationprocesses,nanotechnology,andengineeredmaterialstoenhancetheremovalofDBPsduringdifferentstagesofwatertreatment.
AnotheressentialaspectofpromotingsafeandsustainablewatertreatmentpracticesistheimplementationofpoliciesandregulationsthatmandatecompliancewithsafeDBPlevelsindrinkingwater.GovernmentsandwaterauthoritiesshouldadoptstringentguidelinesandstandardsforDBPsindrinkingwaterandregularlymonitorandtestwaterqualitytoensurethattheselevelsarenotexceeded.
Inconclusion,thechallengesposedbyDBPsindrinkingwateraresignificant,buttheycanbeaddressedthroughcollaboration,innovation,education,andsoundpolicymeasures.Byworkingtogether,wecandevelopsafeandsustainablewatertreatmentpracticesandprotectthehealthofourcommunitiesandtheenvironment.Itistimetotakeaction
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理学科前沿动态与探讨
- 医学影像诊断与介入治疗技术培训与解析
- 2026年黑龙江民族职业学院单招综合素质考试模拟试题带答案解析
- 神经内科护理操作规范培训
- 生物医疗创新项目孵化与投资
- 医疗器械安全与风险管理
- 互联网医疗与医疗服务创新
- 2026年广东江门中医药职业学院单招综合素质考试参考题库带答案解析
- 2026年海南经贸职业技术学院单招职业技能笔试模拟试题带答案解析
- 2026年巴音郭楞职业技术学院单招综合素质考试模拟试题带答案解析
- 2026年1月浙江省高考(首考)英语听力试题(含答案)
- 生活垃圾转运车辆调度管理方案
- 2026内蒙古包头市昆区残联残疾人专职委员招聘2人考试备考题库及答案解析
- 2025版《煤矿安全规程》宣贯解读课件(电气、监控与通信)
- 2025年国家开放大学《管理学基础》期末机考题库附答案
- 2025年人民网河南频道招聘备考题库参考答案详解
- kotlin android开发入门中文版
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库完整答案详解
- 委内瑞拉变局的背后
- 政府补偿协议书模板
- 语文-吉林省2026届高三九校11月联合模拟考
评论
0/150
提交评论