




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
低速大转矩稀土永磁同步电动机技术研究报告大连钰霖电器有限公司2007年3月1.项目背景与研究目的[1]项目背景21世纪人类面临的三大难题是:能源危机,环境污染和人口爆炸。而工程技术界的主题无疑应该是能源危机和环境污染。目前,在机械装备制造业,诸如:机床、重矿机械、建筑机械、电力机械、石油机械等需要低速大转矩传动的系统,仍主要采用减速机-电机的传统驱动模式。一方面,由于减速机齿轮等机械的原因降低了系统的整体传动效率;另一方面,由于减速机的存在使驱动系统的整体体积较大,或者说系统的传输力能密度较低。近年来出现的机电一体化技术,虽然在力能密度方面有所提高,但由于其在理论思想方面仅限于机械减速机构与电机配合的结构尺寸减小,仍未跳出减速机-电动机传动模式的桎梏,所以其效率和力能密度亦未能令人满意。这种传动模式的主要弊端在于:减速齿轮效率低,尤其是在需要大减速比的传动系统,效率更低;功率密度低,机械减速机的存在,使机械装备体积庞大、设备笨重;环境污染,机械转速机不仅存在噪声污染,同时存在润滑油造成的环境污染;机械加工工艺环节共时多,加速机齿轮加工工艺复杂,工艺环节多,并且精确度要求严格,给机械装备的加工制造带来难度和增加了工艺成本。所以,使用低速大转矩传动,取消机械减速机,实现无齿轮传动是时代的要求,发展的需要。本项目在国家自然科学基金和辽宁省自然科学基金资助下,由沈阳工业大学和大连钰霖电器有限公司共同研制成功,并在2005年获得辽宁省科技进步二等奖。[2]研究目的在低速大扭矩无齿轮传动系统中,采用稀土永磁电机取代传统的异步电动机是各国专家的共识,其技术关键是如何消除电机在低频时的转矩脉振问题。芬兰学者J.Salo,T.等人报导了一种新型低速大扭矩内嵌式磁极结构的永磁同步电动机(PMSM),对不同转子磁极结构利用计算和仿真的方法进行了研究,尽管其理论结果可使电机的转矩纹波减小至5%,但其气隙磁密中仍含有严重的齿谐波。显然在超低速情况下,这些齿谐波的存在仍然会产生转矩脉振。瑞典的NicolaBianchi等人,采用移动转子磁极位置的方法消除PMSM的转矩纹波,仅适用于8极以下,且要求电机的转子要具有足够磁极摆放空间。德国的N.Bianchi等人,利用供电电流波形调制来削弱PMSM转矩纹波[3],是一种依赖于电机外部控制的方法,尽管部分地减小了PMSM的输出转矩纹波,但由于电机内电势波形和气隙磁场谐波的存在,使电机损耗加大,影响了电机的效率。瑞士的P.Lampola等人,分析了多极低速PMSM,但其样机仅局限于12极以内的情况。综观上述文献报导,其共同之处在于没有注意到PMSM在现代正弦波脉宽调制(SPWM)电源供电情况下,如何从低速大转矩传动系统最佳的角度来研究PMSM的分析和设计问题,并且其分析和解决问题的出发点都是从针对电机的转矩,而忽视了产生转矩脉振的根本原因,即电机内电势波形的设计和研究。本项目研究低速大转矩稀土永磁同步电动机,与电力电子技术、高集成的机电一体化技术一同,组成的电子-电气-机械一体化驱动技术的理论和技术。从低速大转矩传动系统最优化的角度,重点解决低速大转矩稀土永磁同步电动机的最优化设计问题;消除低频转矩脉动问题;转子嵌入式磁极结构的漏磁问题。并成功地在工厂大机械无齿轮传动系统中得到应用。2.低速大转矩稀土永磁同步电机的研制原理1SPWM电源供电下PMSM的数学模型现代变频器几乎全部采用SPWM的电压输出波形,它是利用标准的正弦波与三角波经调制而成。理论分析和实验均表明,SPWM输出电压波形中低次谐波之和为零,或者说SPWM的输出电压是一个标准的正弦波。将三相SPWM的输出电压,采用功率不变约束的dq0坐标变换后供电给PMSM的电压、磁链和电磁转矩方程,在dq0轴坐标系中,写成空间矢量形式为[5]:(1)(2)(3)(4)(5)式中为SPWM电源的输出三相对称电压有效值(V);为SPWM电源在dqo坐标下的分量,对于三相对称系统;是以电弧度计的转子磁极轴线相对定子u相轴线沿气隙圆周的夹角,为初始位置角,为定子电角频率;为电机定子绕组相电阻;为dqo坐标下电流和磁链的空间矢量;p为电机极对数;为PMSM的电磁转矩。PMSM的空间矢量图,如图1所示。从图1中可以看出,定子电流空间矢量与定子磁链空间矢量同相,而定子磁链与永磁体产生的气隙磁链间的空间电角度为,且(6)(7)将(6)(7)式代入(5)可得(8)式中分别为PMSM的直轴和交轴同步电感。图1PMSM空间矢量图由上式可以看出,PMSM电磁转矩含有两个分量,第一项为永磁转矩,第2项磁阻转矩。对于PMSM,一般,因此,为充分利用磁阻转矩,在控制上要使直轴电流分量为负值,即。在采用功率不变约束的坐标变换后,dqo轴系统中的各量(电压、电流、磁链)等于uvw轴系统中各相应量的相有效值的倍,(m为相数)。电磁转矩(8)的稳态表达式可为(9)式中为dqo坐标下永磁体磁场在PMSM电枢绕组中产生的内电势,分别为PMSM的直轴和交轴同步电抗。从(2)和(9)式可见,要消除PMSM低频脉振转矩脉动,只要能使其内电势的波形为标准的正弦波,即可使电流的波形也为正弦波。当然,若做到了这一点,也就实现了消除低频转矩脉振的目的。2.2低速大扭矩PMSM的设计研究从电磁感应定律可知,要使电机内电势波形正弦,其实就是如何使产生内电势的磁场波形正弦的问题。从电机的基本理论可知,影响磁场波形的因素除电机设计的共同问题外,对于PMSM可主要可归纳为转子永磁体结构形式的选取;主磁极极弧系数的选择;电枢绕组的排布方式和定子齿谐波影响的消除等四个方面。2.2.1转子永磁体结构形式的选取PMSM的磁极形式是多种多样的,按永磁体激励的方向可分为径向结构和切向结构,按安装形式可以分为外贴式和内置式,其基本形式如图2所示。从SPWM电源与PMSM匹配运行所组成的低速大扭矩驱动系统最优化观点出发,为保证驱动系统有足够的线性调节范围,SPWM变频器额定输出频率应尽可能高(一般取25Hz以上);为降低变频器的成本和损耗,要求变频器的额定输出电流要尽可能小。因此,电机在设计上要采用多极结构,以降低额定同步转速;在大扭矩情况下,减小电机的额定电流,则必须使每极具有足够强的激励磁场。永磁体提供磁场的强度是与其激励面积直接相关的,而对于图2(a)(b)所示的径向磁极结构,要在中小型电机中采用多极是不可能在有限的空间内获得足够激励面积的。因此,低速大扭矩PMSM采用切向磁极结构几乎是惟一的选择。(a)(b)(c)(a)(b)(c)图2PMSM转子磁极的基本形式(a)径向外贴式;(b)径向内置式;(c)切向结构。(a)对称隔磁回路;(a)对称隔磁回路;(b)非对称隔磁回路图3不同转子隔磁回路永磁体激励磁场静态分布2.2.2主磁极极弧系数的选择在同步电机的设计中,极弧系数的选取对电机电枢绕组内电势波形以及电机出力大小有着重要的影响。在低速大扭矩驱动系统中,采用PMSM的优点之一是可以通过选择适当的极弧系数来消除某次谐波对电枢绕组内电势波形的影响。根据电机理论,图2-a所示矩形波磁密分布用Fourier级数分解成空间各次谐波的数学表达式为(10)式中气隙磁密的幅值(T);k为奇数。若通过适当地调整漏磁的大小和选择合适的极弧系数,使气隙磁密的波形呈图2-b所示的准梯形波分布时,则用Fourier级数分解成空间各次谐波的数学表达式变为(11)式中是主磁极极弧短距角的一半()。比较式(10)和(11),式(11)是式(10)的倍,这意味着对于基波的削弱仅为倍,在时其值近似为1;而对各次谐波却减小为(10)式的1/k倍。并且完全可以通过令来消除某一特定的谐波。图4气隙磁场为矩形波和准梯形波时沿气隙圆周的电弧度分布从电机理论可知,能被3整除的奇次谐波可以通过三相对称绕组的联接消除,在电机的设计中一般最关心的是5次和7次谐波的消弱。因此,理想的选择是(12)2.2.3电枢绕组的排布方式在一般的交流电机设计中,可以通过电机定子绕组的分布和短距来消除谐波。但在采用了多极的低速中小型电机中,已经不可能有足够的电枢绕组槽,来供分布使用。采用整距集中绕组显然对电枢绕组内电势波形正弦化不利。因此,采用分数槽绕组几乎是惟一的选择。根据电机设计基本理论[7],分数槽绕组不但可以有效地消弱电枢绕组内电势中的高次谐波,而且对于(13)式中齿谐波电势的次数m电枢绕组的相数q电枢绕组每极每相槽数次的齿谐波同样有消除作用。从提高绕组利用系数和消除主要次谐波的观点出发,分数槽绕组的实际线圈跨距应该采用(14)式取整短距的方法确定。(14)式中Q电枢绕组的槽数;p为电机极对数。2.2.4齿谐波影响的消除在低速大扭矩驱动系统中,气隙齿谐波磁场对低频转矩脉动的影响显得尤为突出,必须彻底消除。在异步电动机中,通常采用转子斜槽的方法来消除齿谐波的影响。在PMSM中,可以通过采用分数槽电枢绕组来部分地消除齿谐波的影响。但要彻底消除齿谐波可能造成的低频转矩脉动和电磁噪声,仍有必要采用斜槽方式。由于PMSM为了降低永磁体的造价,一般是规则的长方体,采用转子斜槽会给永磁体安装带来不必要的麻烦。因此,只有采用定子斜槽的工艺。理论分析表明,斜一个定子槽就可以消除齿谐波。但考虑到PMSM的极弧系数一般较异步电动机的小,磁极的边缘效应也要比异步电动机的强,所以理想的斜槽数应该是(15)式中定子槽两端沿气隙圆周扭转的弧长;定子槽沿气隙圆周的槽距弧长。2.3技术质量指标稀土高效永磁电机功率等级和安装尺寸符合1EC标准,其对应关系与国际上较有影响的德国西门子D1N42673标准一致,也与Y系列电机一致,这样既有利于稀土永磁电机出口,也有利于稀土永磁电机在国内市场上逐步取代进口电机。1、绝缘等级稀土高效永磁电机采用F级绝缘,温升按B级考核,提高了永磁电机可靠性。由于采用了F级绝缘,在设计时有足够的温升裕度,有利于发电机在使用环境十分恶劣情况下保证正常运转,增加了发电机运转的可靠性。2、防护等级稀土高效永磁电机通过对结构的改进(适当增加端盖与转轴配合面的长度,在轴承外盖与转轴的配合处增加橡皮密封圈等),使发电机的防护等级提高到1P55,提高了发电机的使用可靠性。3、噪声和振动稀土高效永磁电机通过在电磁和结构上的各种措施改进,如选择适当的槽配合和槽斜度,增加机座和端盖的刚度,提高端盖轴承室和转轴轴承档加工精度,改进风扇和风罩的结构等,使稀土高效永磁电机的噪声和振动得到有效控制。4、性能要求永磁电机性能参数(%)额定输出量1/41/23/44/45/4η设计值91.093.5+94.5+94.0+93.5η最小值—92.593.092.5—cosφ设计值0.500.73+0.81+0.84+0.85cosφ最小值—0.690.770.80—5、电机性能对比满载效率堵转转矩/额定转矩牵入转矩/额定转矩低速大转矩Y=2\*Arabic2-250-683.5>3>0.8一般永磁电机80结论在低速大扭矩驱动系统中,采用SPWM供电下的PMSM驱动模式,与传统的电机-减速机模式相比具有明显的优势,在驱动系统的传输性能方面可以实现高效高力能密度;在控制性能方面,可以实现最佳负载角控制。要消除低频转矩脉动的影响,在低速大扭矩PMSM的设计中,必须使电枢内电势的波形正弦化。实现内电势波形正弦化的四个要点是:[1]采用切向磁极结构,并合理地调节漏磁的大小;[2]合理选择主磁极极弧系数;[3]定子采用分数槽绕组;[4]定子斜槽。3.与国外同类技术比较目前,低速大转矩永磁同步电动机主要应用在无齿轮电梯的曳引传动中。在该技术领域中,代表当代国际先进水平的产品是日本和德国的几家公司,其中在电机方面日本以安川公司,德国以威特公司为代表。本项成果与日本安川和德国威特公司相同规格产品(额定转矩:580Nm,额定转速:163rpm,额定功率:10Kw)的综合对比如下表1所示。从对比可见,本项技术成果在性能和价格方面都比当代国际先进水平有优势公司效率功率因数最低允许频率Hz重量Kg噪音dB价格万元日本安川0.90.892750<604.8德国威特760<605.2沈阳钰霖0.910.920.2770<582.34.成果的创造性、先进性成果的创造性主要体现在:[1]在低速大转矩无齿轮传动中,消除了低频转矩脉动。使电机保持平稳运行的最低频率下降至0.2Hz,是日本技术的十分之一。[2]有效地消除了电机中的磁场谐波,使电机内电势的波形畸变率低于2%,比国家要求的电网波形畸变率5%指标低3个百分点。[3]由于采用了基于人工智能的电子-电气-机械一体化设计,使电机从系统全局最优化观点设计,所以效率和功率因数略高于日本和德国的水平。先进性体现在:[1]理论上,利用电子-电气-机械一体化最优观点进行系统设计,突破了传统的三个学科界限。[2]产品的整体性能达到或超过了国外先进水平,效率高1个百分点,功率因数高2个百分点,最低允许频率优越10倍,并且噪音低,价格是国外的48%。因此,性价比是国外先进水平的2倍以上。5.作用意义(直接经济效益和社会意义)大力应用新型永磁材料,将我国资源优势转化为产业优势,能带动高新技术产业及相关产业的迅速发展,形成国民经济新的增长点。因此,高效稀土永磁电动机是一种市场看好,应用潜力巨大的产业。高效稀土永磁同步电动机是一种高效节能产品,平均节能率高达25%以上,部分专用电机平均节电率高达30—40%左右,而且可以做到价格合理。尤其是在低速大转矩传动中,取消机械减速机,实现无齿轮传动是时代的要求,发展的需要。我国开发的高效低速大转矩稀土永磁同步电动机,在国际市场有极强的竞争力。据电力部门估算,石油,矿山等行业五六十年代的老设备约占1/3,其本身运行效率只有30—40%,系统运行效率大约为20%。齿轮箱年维修费用大,若采用低速大转矩稀土永磁同步电动机,电机的成本将增加40%,而运行效率可提高50—65%,如果这些电机更新换代没那么将有一个很大的市场空间。6.推广应用的范围、条件和前景以及存在的问题和改进意见稀土永磁材料的开发的稀土电机具有中国特色,不仅居世界先进水平,而且在大功率超高效率等方面居国际领先地位。我国稀土电机的技术水平超过美国和欧洲国家对电机产品的节能认证标准,且我国电机生产厂家众多,忠孝机电产品户口较多。我国开发稀土电机具有技术、市场两方面的有利因素,竞争优势明显。目前,全国每年生产各种电机约3600万千瓦,稀土永磁电机在新年息产业、机电一体化、汽车、摩托车、冶金矿山设备、风机,水泵等都有广泛应用前景。如每年使用钕铁硼磁体600~800吨,生产300万千瓦稀土永磁电机,产值6亿元,可为国家节省电力投资6亿元,节省电费2亿元。我国50年代至60年代车生产的J,J0系列电机、体积大、绝缘性能差,效率低,据统计还具有总装机容量的10%~15%,即达3000~4500万千瓦。60年代至70年代推广的J2、J02系列电机,起动性能差,效率也较低,这类产品约占60%~70%,即达2亿千瓦左右,如用稀土永磁电机代替,每年更新3000万千瓦,每年可增产值60亿元,可是几百个电机厂从停产、半停产困境中摆脱出来。所以本产品市场发展潜力巨大。项目建成后达产年可实现销售收入6023万元,出口创汇300万美元,利润总额1531万元,销售税金及附加445万元,全部投资每部收益率(税后)为41.98%,投资回收期为3.68年,项目具有较好的收益及投资回收能力。参考文献[1]J.Salo,T.Heikkilä,andJ.Pyrhönen,“NewLow-SpeedHigh-TorquePermanentMagnetSynchronousMachineWithBuriedMagnets,”ProceedingsofICEM’200028-30AugustEspooFinland,pp.1246-1250.[2]NicolaBianchi,SilverioBolognani,“ReducingTorqueRippleinPMSynchronousMotorbyPole-Shifting”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1222-1226.[3]N.Bianchi,S.Cervaro,andL.Malesani,“CurrentShapesforMinimizingTorqueRippleinSPMMotors”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1237-1241.[4]P.Lampola,P.Saransaari,“AnalysisofaMulti-pole,Low-SpeedPermanent-MagnetSynchronousMachine”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1251-1255[5]MorimotoS.,“ServoDriveSystemandControlCharacteristicsofSalientPolePermanentMagnetSynchronousMotor,”IEEETrans.IA.1993,29(2):338~343.[6]唐任远等著.现代永磁电机的理论与设计.北京:机械工业出版社,1997.[7]程福秀,林金铭主编.现代电机设计.北京:机械工业出版社,1993.[8]张炳义,冯桂宏,王凤翔,王益全,王丽峰.SPWM供电下低速大扭矩永磁同步电动机的设计特点.电工技术学报,2001年第6期,85-90。[9]ZhangBingyi,FengGuihong,WangFengxiang,WangYiquan,WangLifeng.OptimizedDesignofInnerPotentialWaveformofPMSMforLow-Speed&High-TorqueDriveSystems.ProceedingsofPowerCon’2002,Kunming.[10]ZhangBingyi,FengGuihong,WangFengxiang,WangYiquan,WangLifeng.DesignPrinciplesofLow-SpeedHigh-TorquePMSMotorwithSPWMInverterPowerSupply.ProceedingsofCICEM’2001,Shenyang,828~830.[11]ZhangBingyi,Wangyiquan,FengGuihong,SunGuanggui,WangXiaofan.ParameterCalculationofIrregularPhaseBeltWindingsforChangeable-PoleMotorsBasedonSlotCurrentAnalysis.ICEMS’2003,Beijing.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 果蔬销售中的客户关系管理考核试卷
- 纺织品的数字化回收与再利用技术考核试卷
- 西南科技大学《微分方程》2023-2024学年第一学期期末试卷
- 江西省南昌市第一中学2025年高三元月调研考试数学试题含解析
- 山西铁道职业技术学院《基础泰语(三)》2023-2024学年第二学期期末试卷
- 荆州学院《物流系统规划》2023-2024学年第一学期期末试卷
- 江西软件职业技术大学《天然产物与功能食品》2023-2024学年第二学期期末试卷
- 山东省潍坊市寿光重点中学2025届中考模拟试卷(二)化学试题含解析
- 上海市虹口区继光学校2025年全国中考统一考试模拟试题(一)数学试题含解析
- 陕西省渭南市富平县重点名校2025届初三下学期高中等级考质量抽测生物试题试卷含解析
- 2022山东高考语文答题卡(新高考I卷)word版3
- lovo操作手册中文翻译版-professorgong
- 2021年上海市工业技术学校教师招聘试题及答案解析
- 重力式降落救生艇的降落和释放装置课件
- 偏头痛PPT课件(PPT 43页)
- 工程管理专业毕业论文——施工组织设计
- 初中物理全册知识点总结(教科版)
- 神经病学绪论英文课件
- 工厂个人简历登记表格
- 用友U8数据字典
- 化工概论:典型化工工艺
评论
0/150
提交评论