




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π2.已知平面向量的夹角为,且,则()A. B. C. D.3.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛4.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.5.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.6.已知向量a→=(2,0),|b→|=1,a→⋅A.2π3 B.π3 C.π7.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.8.在等差数列中,若,则()A. B. C. D.9.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.810.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面积是_______12.点到直线的距离为________.13.在中,,点在边上,若,的面积为,则___________14.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.15.的值为__________.16.函数在区间上的最大值为,则的值是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.18.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.19.已知.(1)求;(2)求的值.20.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.21.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:∵2a考点:正弦定理解三角形2、B【解析】
将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.3、D【解析】
由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【点睛】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.4、C【解析】
将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.5、A【解析】
由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.6、A【解析】
直接利用向量夹角公式得到答案.【详解】解:向量a→=(2,0),|b→|=1,a可得cos<a→则a→与b的夹角为:2π故选:A.【点睛】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.7、D【解析】
根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.8、B【解析】
由等差数列的性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.9、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.10、D【解析】.分子分母同时除以,即得:.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知中圆锥的侧面展开图为半圆且面积为S,我们易确定圆锥的母线长l与底面半径R之间的关系,进而求出底面面积即可得到结论.【详解】如图:设圆锥的母线长为l,底面半径为R若圆锥的侧面展开图为半圆则2πR=πl,即l=2R,又∵圆锥的侧面展开图为半圆且面积为S,则圆锥的底面面积是.故答案为.【点睛】本题考查的知识点是圆锥的表面积,根据圆锥的侧面展开图为半圆,确定圆锥的母线长与底面的关系是解答本题的关键.12、3【解析】
根据点到直线的距离公式,代值求解即可.【详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【点睛】本题考查点到直线的距离公式,属基础题.13、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.14、4π【解析】
利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【点睛】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.15、【解析】
直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.16、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即可;二、任取两点构造两个向量,证明两向量共线即可。在考试中经常采用第二种方法,便于计算。证明四点共线一般采用第一种方法。18、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解析】
(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【点睛】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.19、(1)(2)【解析】
(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【点睛】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.20、(1)或;(2);(3)存在,理由见解析【解析】
求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【点睛】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的面积公式,考查化归与转化的数学思想方法,属于中档题.21、(1)证明见解析;(2)证明见解析.【解析】
(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前台规划管理办法
- 兰州民办管理办法
- 单位出版管理办法
- 公证翻译管理办法
- 关于烈士管理办法
- 关于行车管理办法
- 监委会管理办法
- 兽医器械管理办法
- 军事住校管理办法
- 出国物业管理办法
- 风力发电项目投资计划书
- 2025年度食堂餐具设备升级改造采购合同
- 河北公物拍卖管理办法
- 2025年企业首席质量官培训考核试题(含答案)
- (高清版)DB46∕T 707-2025 榴莲栽培技术规程
- 迁地种群遗传多样性-洞察及研究
- Q-CSG1211016-2025 光伏发电站接入电网技术规范
- 2025-2030年古董行业市场深度调研及发展趋势与投资研究报告
- 26个英文字母(课堂PPT)
- JJF 1809-2020 逆反射测量仪校准规范(高清版)
- 性能测试报告(模板)
评论
0/150
提交评论