2023届云南省玉溪市通海一中高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2023届云南省玉溪市通海一中高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2023届云南省玉溪市通海一中高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2023届云南省玉溪市通海一中高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2023届云南省玉溪市通海一中高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,12.阅读如图所示的程序框图,当输入时,输出的()A.6 B. C.7 D.3.若,则()A.-4 B.3 C.4 D.-34.的值是()A. B. C. D.5.若一个正四棱锥的侧棱和底面边长相等,则该正四棱锥的侧棱和底面所成的角为()A.30° B.45° C.60° D.90°6.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(

)A. B. C. D.7.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.8.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则9.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④10.设函数,若关于的方程恰有个不同的实数解,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一组样本数据8,10,18,12的方差为___________.12.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.13.已知直线与直线互相平行,则______.14.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.15.设为,的反函数,则的值域为______.16.已知向量,,则与的夹角等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的解析式.18.在中,内角,,所对的边分别为,,.若.(1)求角的度数;(2)当时,求的取值范围.19.求函数的最大值20.设两个非零向量与不共线,(1)若,,,求证:三点共线;(2)试确定实数,使和同向.21.已知数列的前项和为,,.(1)求数列的通项公式;(2)在数列中,,其前项和为,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【详解】由,得,所以圆心为,半径为.【点睛】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.2、D【解析】

根据程序框图,依次运行程序即可得出输出值.【详解】输入时,,,,,,,输出故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件.3、A【解析】

已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.4、A【解析】由于==.故选A.5、B【解析】

正四棱锥,连接底面对角线,在中,为侧棱与地面所成角,通过边的关系得到答案.【详解】正四棱锥,连接底面对角线,,易知为等腰直角三角形.中点为,又正四棱锥知:底面即为所求角为,答案为B【点睛】本题考查了线面夹角的计算,意在考察学生的计算能力和空间想象力.6、A【解析】

画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.7、D【解析】

运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【点睛】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.8、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.9、C【解析】

,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.10、B【解析】

由已知中函数,若关于的方程恰有个不同的实数解,可以根据函数的图象分析出实数的取值范围.【详解】函数的图象如下图所示:关于的方程恰有个不同的实数解,令t=f(x),可得t2﹣at+2=0,(*)则方程(*)的两个解在(1,2],可得,解得,故选:B.【点睛】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、14【解析】

直接利用平均数和方差的公式,即可得到本题答案.【详解】平均数,方差.故答案为:14【点睛】本题主要考查平均数公式与方差公式的应用.12、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.13、【解析】

由两直线平行得,,解出值.【详解】由直线与直线互相平行,得,解得.故答案为:.【点睛】本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比,属于基础题.14、【解析】

设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【点睛】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.15、【解析】

求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.16、【解析】

由已知向量的坐标求得两向量的模及数量积,代入数量积求夹角公式得答案.【详解】∵(﹣1,),(,﹣1),∴,,则cos,∴与的夹角等于.故答案为:.【点睛】本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解析】

(1)通过判断函数的单调性,求出的值域,进而可判断在上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数的取值范围;(3)通过分离常数法求的值域,利用新定义进而求得的解析式.【详解】(1)当时,,由于在上递减,∴函数在上的值域为,故不存在常数,使得成立,∴函数在上不是有界函数(2)在上是以3为上界的有界函数,即,令,则,即由得,令,在上单调递减,所以由得,令,在上单调递增,所以所以;(3)在上递减,,即,当时,即当时,当时,即当时,∴.【点睛】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.18、(1);(2).【解析】

(1)根据余弦定理即可解决.(2)根据向量的三角形法则即可解决.【详解】(1)因为,所以得,所以,所以,因为所以;(2)取的中点,则,,所以所以,从而由平行四边形性质有故.【点睛】本题主要考查了余弦定理以及向量的三角形法则,其中第二问用了完全平方以及加减消元的思想,是本题的一个难点.解决本题的关键是画一个三角形结合三角形进行分析.19、最大值为5【解析】

本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【详解】,因为,所以当时,即,函数最大,令,,故最大值为.【点睛】本题考查同角三角函数关系以及一元二次函数的相关性质,考查的公式为,考查计算能力,体现了综合性,是中档题.20、(1)证明见解析(2)【解析】

(1)根据向量的运算可得,再根据平面向量共线基本定理即可证明三点共线;(2)根据平面向量共线基本定理,可设,由向量相等条件可得关于和的方程组,解方程组并由的条件确定实数的值.【详解】(1)证明:因为,,,所以.所以共线,又因为它们有公共点,所以三点共线.(2)因为与同向,所以存在实数,使,即.所以.因为是不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论