版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°2.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.3.设函数,若对任意的实数x都成立,则的最小值为()A. B. C. D.14.下列大小关系正确的是()A.B.C.D.5.在中,,且,若,则()A.2 B.1 C. D.6.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20187.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.8.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”9.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2 B.8 C. D.10.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知过两点,的直线的倾斜角是,则______.12.若函数是奇函数,其中,则__________.13.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.14.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)15.已知x、y满足约束条件,则的最小值为________.16.不等式的解集为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程18.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.19.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.20.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.21.在平面直角坐标系xOy中,已知点,,,.(1)①证明:;②证明:存在点P使得.并求出P的坐标;(2)过C点的直线将四边形ABCD分成周长相等的两部分,产生的另一个交点为E,求点E的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【点睛】本题考查斜率和倾斜角的关系,是基础题.2、C【解析】
以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.3、B【解析】
对任意的实数x都成立,说明三角函数f(x)在时取最大值,利用这个信息求ω的值.【详解】由题意,当时,取到最大值,所以,解得,因为,所以当时,取到最小值.故选:B.【点睛】本题考查正弦函数的图象及性质,三角函数的单调区间、对称轴、对称中心、最值等为常考题,本题属于基础题.4、C【解析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。5、A【解析】
取的中点,连接,根据,即可得解.【详解】取的中点,连接,在中,,且,所以,.故选:A【点睛】此题考查求向量的数量积,涉及平面向量的线性运算,根据数量积的几何意义求解,可以简化计算.6、A【解析】
通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,7、C【解析】
先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.8、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.9、C【解析】
试题分析:由正弦定理可知,∴,∴.考点:正弦定理的运用.10、C【解析】
设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.12、【解析】
定义域上的奇函数,则【详解】函数是奇函数,所以,又,则所以填【点睛】定义域上的奇函数,我们可以直接搭建方程,若定义域中则不能直接代指.13、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.14、【解析】
根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.15、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.16、【解析】因为所以,即不等式的解集为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-118、(1);(2)圆锥体积,表面积【解析】
(1)由球的半径可知圆柱底面半径和高,代入球和圆柱的体积公式求得体积,作比得到结果;(2)由球的半径可得圆锥底面半径和高,从而可求解出圆锥母线长,代入圆锥体积和表面积公式可求得结果.【详解】(1)设球的半径为,则圆柱底面半径为,高为球的体积;圆柱的体积球与圆柱的体积比为:(2)由题意可知:圆锥底面半径为,高为圆锥的母线长:圆锥体积:圆锥表面积:【点睛】本题考查空间几何体的表面积和体积求解问题,考查学生对于体积和表面积公式的掌握,属于基础题.19、(1);(2)证明见解析.【解析】
(1)由,可得出,两式相减,化简即可得出结果;(2)令代入求出的值,再由求出的值,可验证和时均满足,并假设当时等式成立,利用数学归纳法结合数列的递推公式推导出时等式也成立,综合可得出结论.【详解】(1)对任意的,由可得,上述两式相减得,化简得;(2)①当时,由可得,解得,满足;②当时,由于,则,满足;③假设当时,成立,则有,由于,则.这说明,当时,等式也成立.综合①②③,.【点睛】本题考查数列递推公式的求解,同时也考查了利用数学归纳法证明数列的通项公式,考查计算能力与推理能力,属于中等题.20、乙,理由见解析.【解析】
分别求解两人的测试数据的平均数和方差,然后进行判定.【详解】甲的平均数为:,方差为:;乙的平均数为:,方差为:;因为,,所以选择乙参加比赛较为合适.【点睛】本题主要考查统计量的求解及决策问题,平均数表示平均水平的高低,方差表示稳定性,侧重考查数据分析的核心素养.21、(1)①见解析;②见解析,;(2).【解析】
(1)①利用夹角公式可得;②由条件知点为四边形外接圆的圆心,根据,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 打墙拆除装修合同范本
- 工程合同责任转移协议
- 学生服装购买合同范本
- 工伤保险公司合同范本
- 天河食堂承包协议合同
- 房子出售转租合同范本
- 意向性协议与后续合同
- 宠物医院分销合同范本
- 广告公司入股合同范本
- 承接楼盘保洁合同范本
- 【MOOC期末】《信号与系统》(北京邮电大学)中国慕课期末网课答案
- 2024北京朝阳四年级(上)期末数学(教师版)
- 米脂中国HRT指南
- 上海市静安区2024届高三二模语文试卷(解析版)
- 消防设施维保服务投标方案
- ISO14001及ISO45001法律法规清单
- (完美版)四肢骨折现场急救外固定技术
- DLT664-2023年带电设备红外诊断应用规范
- 基于三角形生长下的特殊平行四边形复习
- 厂房矩形控制网测设及柱列轴线与柱基施工测量
- 挡土墙工程施工组织设计
评论
0/150
提交评论