广东汕头潮阳区2023年数学高一第二学期期末学业水平测试试题含解析_第1页
广东汕头潮阳区2023年数学高一第二学期期末学业水平测试试题含解析_第2页
广东汕头潮阳区2023年数学高一第二学期期末学业水平测试试题含解析_第3页
广东汕头潮阳区2023年数学高一第二学期期末学业水平测试试题含解析_第4页
广东汕头潮阳区2023年数学高一第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边为,,,且为锐角,若,,,则()A. B. C. D.2.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.3.在数列中,,,则的值为:A.52 B.51 C.50 D.494.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=05.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A.2张恰有一张是移动卡 B.2张至多有一张是移动卡C.2张都不是移动卡 D.2张至少有一张是移动卡6.若关于x的方程sinx+cosx-2A.(2,94] B.[2,57.圆C:x2+yA.2 B.3 C.1 D.28.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;9.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π10.已知角的终边经过点,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.12.函数的定义域为___________.13.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.14.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________15.记,则函数的最小值为__________.16.函数的最小正周期为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在多面体中,为等边三角形,,点为边的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的正弦值.18.已知向量,满足,,.(1)求向量,所成的角的大小;(2)若,求实数的值.19.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.20.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?21.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【详解】由于,有正弦定理可得:,即由于在中,,,所以,联立,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.2、A【解析】

逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.3、A【解析】

由,得到,进而得到数列首项为2,公差为的等差数列,利用等差数列的通项公式,即可求解,得到答案.【详解】由题意,数列满足,即,又由,所以数列首项为2,公差为的等差数列,所以,故选A.【点睛】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,其中解答中熟记等差数列的定义,以及等差数列的通项公式是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。5、B【解析】

概率的事件可以认为是概率为的对立事件.【详解】事件“2张全是移动卡”的概率是,它的对立事件的概率是,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”.故选B.【点睛】本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1.6、D【解析】

换元设t=sinx+cos【详解】sinx+cosx-2sint=sinx+cosa=t-如图:数a的取值范围为[2,故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.7、D【解析】

由点到直线距离公式,求出圆心到直线y=x的距离d,再由弦长=2r【详解】因为圆C:x2+y2-2x=0所以圆心(1,0)到直线y=x的距离为d=1-0因此,弦长=2r故选D【点睛】本题主要考查求圆被直线所截弦长问题,常用几何法处理,属于常考题型.8、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.9、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.10、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.12、【解析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.13、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.14、【解析】四棱锥的侧面积是15、4【解析】

利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.16、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).【解析】

(I)取中点,连结,利用三角形中位线定理可证明是平行四边形,可得,由线面平行的判定定理可得结果;(Ⅱ)先证明,,可得平面,从而可得平面,由面面垂直的判定定理可得结果;(Ⅲ)取中点,连结,直线与平面所成角等于直线与平面所成角,过作,垂足为,连接,为直线与平面所成角,利用直角三角形的性质可得结果.【详解】(I)取中点,连结,是平行四边形,平面,平面,平面.(II),又平面平面,又为等边三角形,为边的中点,平面由(I)可知,平面,平面平面平面.(III)取中点,连结,所以直线与平面所成角即为直线与平面所成角,过作,垂足为,连接.平面平面,平面,平面.为斜线在面内的射影,为直线与平面所成角,在中,直线与平面所成角的正弦值为.【点睛】本题主要考查线面平行、面面垂直的证明以及线面角的求解方法,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.18、(1)(2)【解析】

(1)化简即得向量,所成的角的大小;(2)由,可得,化简即得解.【详解】解:(1)由,可得.即,因为,所以,又因为,,代入上式,可得,即.(2)由,可得.即,则,得.【点睛】本题主要考查数量积的运算和向量的模的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1);(2)对称中心,;对称轴为【解析】

利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函数的问题;关键是能够熟练掌握整体对应的方式,结合正弦函数的性质来求解单调区间、对称轴和对称中心.20、(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.【解析】试题分析:(1)根据利润等于收入减成本列式:,由投入的肥料费用不超过5百元及实际意义得定义域,(2)利用基本不等式求最值:先配凑:,再根据一正二定三相等求最值.试题解析:解:(1)().(2).当且仅当时,即时取等号.故.答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.21、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论