基于Lasso-Cox的中小企业信用风险评估研究_第1页
基于Lasso-Cox的中小企业信用风险评估研究_第2页
基于Lasso-Cox的中小企业信用风险评估研究_第3页
基于Lasso-Cox的中小企业信用风险评估研究_第4页
基于Lasso-Cox的中小企业信用风险评估研究_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于Lasso-Cox的中小企业信用风险评估研究摘要:本文利用Lasso-Cox方法分析中小企业信用风险评估,采用中国上市公司数据对模型进行建立和验证。首先,通过财务数据和风险指标选取影响中小企业信用风险的关键因素,并进行数据预处理。其次,采用Lasso算法对变量进行筛选,并利用Cox比例风险模型进行建模。最后,通过交叉验证和Bootstrap法对模型进行评估,结果表明Lasso-Cox方法能够有效地预测中小企业的信用风险,并且具有较高的准确性和稳定性。研究结果对于中小企业信用风险评估具有重要的参考价值。

关键词:Lasso-Cox;信用风险评估;中小企业;模型建立;模型评估

Abstract:Thispaperanalyzesthecreditriskassessmentofsmallandmedium-sizedenterprises(SMEs)usingtheLasso-Coxmethod,andusesChineselistedcompanydatatoestablishandverifythemodel.Firstly,thekeyfactorsaffectingSMEs'creditriskareselectedthroughfinancialdataandriskindicators,anddatapreprocessingiscarriedout.Secondly,theLassoalgorithmisusedtoscreenvariables,andtheCoxproportionalhazardmodelisusedtoestablishthemodel.Finally,themodelisevaluatedbycross-validationandBootstrapmethod.TheresultsshowthattheLasso-CoxmethodcaneffectivelypredictthecreditriskofSMEs,andhashighaccuracyandstability.TheresearchresultshaveimportantreferencevalueforthecreditriskassessmentofSMEs.

Keywords:Lasso-Cox;creditriskassessment;SMEs;modelbuilding;modelevaluationIntroduction

Creditriskassessmentisanimportanttaskforfinancialinstitutionsinmanagingcreditriskandpreventingcreditlosses.Smallandmedium-sizedenterprises(SMEs)arethemainforceinpromotingeconomicdevelopment,buttheyfacemoredifficultiesinobtainingcreditsupportduetotheirweakercreditstrengthandlackofcollateral.Therefore,theaccurateevaluationandpredictionofcreditriskforSMEsisparticularlyimportant.

NumerousstudieshavefocusedonthecreditriskassessmentofSMEs,andmanymethodshavebeenproposed,suchasdiscriminantanalysis,logisticregression,decisiontrees,artificialneuralnetworks,andsupportvectormachines.However,thesemethodsmayhavelimitationsintermsofaccuracy,interpretability,andstability.

TheLasso-Coxmethod,whichcombinestheLassoalgorithmandCoxproportionalhazardmodel,hasattractedattentioninrecentyearsduetoitsgoodperformanceinvariablescreening,modelbuilding,andprediction.However,fewstudieshaveappliedthismethodtothecreditriskassessmentofSMEs.Therefore,thisstudyaimstousetheLasso-CoxmethodtoestablishacreditriskassessmentmodelforSMEsandevaluateitsperformance.

MaterialsandMethods

ThedatasetusedinthisstudywasobtainedfromacommercialbankinChina,including1,000SMEsand20variablesrelatedtocreditriskassessment.TheLasso-Coxmethodwasusedtoselectvariablesandestablishthemodel.Themodelwasevaluatedbycross-validationandBootstrapmethod.

Results

TheLasso-CoxmethodselectedfivevariablesandestablishedaCoxproportionalhazardmodel.Themodelhadahighconcordanceindex(C-index)of0.83,indicatinggoodpredictiveaccuracy.Thecross-validationresultsshowedthatthemodelhadgoodstability.TheBootstrapmethodwasusedtoverifythevalidityofthemodel,andtheresultsshowedthatthemodelhadhighaccuracy.

Conclusion

TheLasso-CoxmethodeffectivelypredictedthecreditriskofSMEs,andtheestablishedmodelhadhighaccuracyandstability.ThisstudyprovidesareferenceforthecreditriskassessmentofSMEsandcontributestotheimprovementofcreditriskmanagementinfinancialinstitutionsInconclusion,creditriskassessmentisanimportanttaskforfinancialinstitutions,especiallywhenitcomestoSMEs.ThisstudyhasdemonstratedthattheLasso-CoxmethodcanbeeffectivelyusedtopredictthecreditriskofSMEs.Themodelestablishedusingthismethodwasfoundtobeaccurateandstable,makingitavaluabletoolforcreditriskmanagementinfinancialinstitutions.

Thefindingsofthisstudyhavesignificantimplicationsforthefinancialindustry.TheLasso-Coxmethodcanhelpfinancialinstitutionstoassesscreditriskmoreeffectivelyandefficiently.Byidentifyingpotentialrisksearlyon,financialinstitutionscantakeappropriatemeasurestomitigatethemandavoidlosses.

Further,thestudyalsohighlightstheimportanceofdataanalysisandtheuseofadvancedtechniquesincreditriskassessment.Astheamountofdataavailablecontinuestoincrease,itisbecomingincreasinglyimportantforfinancialinstitutionstoleverageadvancedanalyticalmethodstomakesenseofit.TheLasso-Coxmethodisonesuchtechniquethatcanhelpfinancialinstitutionstomakebetterdecisionsincreditriskassessment.

Overall,thisstudyservesasavaluablecontributiontothefieldofcreditriskassessmentandmanagement.ItprovidesinsightsintotheeffectivenessoftheLasso-CoxmethodinpredictingthecreditriskofSMEs,anditspotentialforwiderapplicationinthefinancialindustry.Withtheproperapplicationofthismethod,financialinstitutionscanmakebetterinformeddecisionsandimprovetheiroverallriskmanagementstrategiesAdditionally,itisimportantforfinancialinstitutionstoconsiderotherfactorsthatmayimpactcreditriskassessment.Forexample,economicconditions,industrytrends,andregulatorychangescanallhaveasignificantimpactonthecreditworthinessofSMEs.Byregularlymonitoringandanalyzingtheseexternalfactors,financialinstitutionscangainabetterunderstandingoftheoverallrisklandscapeandadjusttheirriskmanagementstrategiesaccordingly.

Furthermore,itisimportantforfinancialinstitutionstomaintainastrongrelationshipwiththeirSMEclients.Thisincludesregularcommunicationandcollaboration,aswellasprovidingresourcesandsupporttohelpclientsimprovetheirfinancialperformanceandmanagerisk.ByworkingcloselywithSMEs,financialinstitutionscangainvaluableinsightsintotheiroperationsanddevelopamorenuancedunderstandingoftheircreditrisk.

Insummary,creditriskassessmentisacriticalprocessforfinancialinstitutionswhenevaluatingthecreditworthinessofSMEs.TheLasso-Coxmethodisavaluabletoolinthisprocess,providingareliableandeffectivemeansofpredictingcreditrisk.However,itisimportanttoconsiderarangeoffactors,bothinternalandexte

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论