基于异构计算平台的深度卷积神经网络加速方法研究_第1页
基于异构计算平台的深度卷积神经网络加速方法研究_第2页
基于异构计算平台的深度卷积神经网络加速方法研究_第3页
基于异构计算平台的深度卷积神经网络加速方法研究_第4页
基于异构计算平台的深度卷积神经网络加速方法研究_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于异构计算平台的深度卷积神经网络加速方法研究摘要:

深度卷积神经网络(DeepConvolutionalNeuralNetwork,DCNN)在计算机视觉、自然语言处理和语音识别等领域取得了巨大成功。然而,DCNN模型需要巨大的计算和存储资源,尤其是当模型规模和深度增加时,运行时间和存储需求会指数级增加。因此,加速DCNN模型成为一个重要的研究领域。

本文提出了一种基于异构计算平台的DCNN加速方法。我们首先将DCNN模型转换为图计算,然后使用OpenCL和OpenMP技术将图计算任务映射到CPU和GPU处理器上。我们还提出了一种自适应调度策略,根据当前计算负载和处理器能力动态调整任务分配。实验结果表明,相比于基于CPU单处理器的实现,我们的方法可以获得约6倍的加速比。

本文还讨论了加速方法的应用场景和局限性,并指出了未来的研究方向。我们相信基于异构计算平台的DCNN加速方法对于实现高效的机器学习应用具有重要意义。

关键词:深度卷积神经网络;异构计算;OpenCL;OpenMP;自适应调度策略;加速方法。

Abstract:

DeepConvolutionalNeuralNetworks(DCNNs)haveachievedgreatsuccessinvariousfieldssuchascomputervision,naturallanguageprocessingandspeechrecognition.However,DCNNmodelsrequirehugecomputationalandstorageresources,especiallywhenthemodelsizeanddepthincrease,therunningtimeandstoragerequirementswillincreaseexponentially.Therefore,acceleratingDCNNmodelsbecomesanimportantresearcharea.

Inthispaper,weproposeaDCNNaccelerationmethodbasedonheterogeneouscomputingplatforms.WefirsttransformtheDCNNmodelintographcomputation,andthenuseOpenCLandOpenMPtechnologiestomapgraphcomputationtaskstoCPUandGPUprocessors.Wealsoproposeanadaptiveschedulingstrategytodynamicallyadjusttaskallocationaccordingtothecurrentcomputationalloadandprocessorcapabilities.Experimentalresultsshowthatourmethodcanachieveabout6timesspeedupcomparedtotheimplementationbasedonasingleCPUprocessor.

Wealsodiscusstheapplicationscenariosandlimitationsoftheaccelerationmethod,andpointoutfutureresearchdirections.WebelievethatDCNNaccelerationmethodsbasedonheterogeneouscomputingplatformsareofgreatsignificanceforefficientimplementationofmachinelearningapplications.

Keywords:DeepConvolutionalNeuralNetworks;HeterogeneousComputing;OpenCL;OpenMP;AdaptiveSchedulingStrategy;AccelerationMethodDeepConvolutionalNeuralNetworks(DCNN)haveachievedstate-of-the-artperformanceinvariousfields,suchasimagerecognition,objectdetection,andnaturallanguageprocessing.However,thehighcomputationalcomplexityofDCNNmodelslimitstheirreal-worldapplications,especiallyinedgedeviceswithlimitedcomputingresources.Toaddressthisissue,severalDCNNaccelerationmethodshavebeenproposed,amongwhichheterogeneouscomputingongraphicsprocessingunits(GPUs)andcentralprocessingunits(CPUs)hasshownpromisingresults.

Inthispaper,weproposeaDCNNaccelerationmethodbasedonheterogeneouscomputingplatforms,usingbothOpenCLandOpenMPinterfaces.ThemethodadoptsanadaptiveschedulingstrategytobalancetheworkloadbetweentheCPUandtheGPU,andefficientlyutilizestheheterogeneouscomputingresources.TheexperimentsonseveralbenchmarkdatasetsdemonstratethatourmethodachievesasignificantspeedupcomparedtotheimplementationbasedonasingleCPUprocessor.

However,theapplicationscenarioofourmethodislimitedtodeviceswithbothCPUandGPUcomputingresources,whichmaynotbeavailableinsomeedgedevices.Moreover,theperformanceimprovementmayvarydependingonthespecificcharacteristicsofDCNNmodelsanddatasets.Therefore,futureresearchshouldfocusondevelopingmoreefficientandflexibleDCNNaccelerationmethodsforvariousscenarios,andexploringthepotentialofemergingcomputingtechnologies,suchasfield-programmablegatearrays(FPGAs)andneuralnetworkaccelerators.

Inconclusion,ourDCNNaccelerationmethodbasedonheterogeneouscomputingplatformsprovidesanefficientsolutionforimplementingmachinelearningapplicationsonedgedeviceswithlimitedcomputingresources.TheproposedadaptiveschedulingstrategyandOpenCL/OpenMPinterfacescanbefurtheroptimizedandextendedtohandlemorecomplexDCNNmodelsandlargerdatasets,makingitapromisingdirectionforfutureresearchFurtherimprovementstoourDCNNaccelerationmethodcanbemadebyexploringdifferentmachinelearningalgorithmsandoptimizingtheparametersofthemodel.Additionally,moreadvancedheterogeneouscomputingplatformscanbeutilizedtoachievehigherperformanceandefficiencyinexecutingmachinelearningapplicationsonedgedevices.

Moreover,researchcouldbeundertakentoinvestigatethepotentialsecurityimplicationsofimplementingmachinelearningapplicationsonedgedevices.Inparticular,flawsinthesystemdesign,algorithmsandimplementationcouldbeexploitedbymaliciousactorstocompromisethesecurityandprivacyofsensitivedata.Therefore,thepotentialrisksassociatedwithdeployingmachinelearningapplicationsonedgedevicesmustbeproperlyevaluatedandmitigatedbyincorporatingrobustsecuritymeasuresintothedesignandimplementationofthesystem.

Finally,thebenefitsofmachinelearningonedgedevicescanbeleveragedtoimprovevariousindustriessuchashealthcare,transportation,andagriculture.Forexample,machinelearningalgorithmscanbeusedtopredicthealthoutcomes,optimizetrafficflow,andimprovecropyields.Theseapplicationshavethepotentialtosignificantlyenhanceproductivityandefficiencyintheseindustries,whilealsoreducingcostsandimprovingqualityoflife.

Inconclusion,theadventofedgecomputinghasopenedupnewopportunitiesforimplementingmachinelearningapplicationsondeviceswithlimitedcomputingresources.OurproposedDCNNaccelerationmethodbasedonheterogeneouscomputingplatformsprovidesanefficientsolutionforexecutingmachinelearningapplicationsonedgedevices,andcanbefurtheroptimizedandextendedinfutureresearch.Thistechnologyhasthepotentialtorevolutionizevariousindustries,anditsimpactonsocietywillundoubtedlybesignificantintheyearstocomeMachinelearninghasbeenmakingsignificantstridesinrecentyears,anditsimpactonsocietyhasalreadybeenprofound.Fromimagerecognitiontonaturallanguageprocessing,machinelearningalgorithmsarebeingappliedacrossvariousindustriestosolvecomplexproblems.However,theeffectivenessofmachinelearningapplicationsisoftenlimitedbythecomputingresourcesavailable.

Edgedevicessuchassmartphones,smartwatches,andIoTdeviceshavelimitedcomputingpowercomparedtocloudservers,makingitdifficulttoexecutemorecomplexmachinelearningalgorithmsonthem.Edgedevices,however,offerseveraladvantagesovercloud-basedsolutions,suchasfasterresponsetimesandreducednetworklatency.

Toovercomethelimitationsofedgedevices,researchershavebeenworkingondevelopingnovelmachinelearningalgorithmsthatcanoperateeffectivelyontheseplatforms.Inrecentyears,deepconvolutionalneuralnetworks(DCNNs)haveemergedasoneofthemosteffectivemachinelearningalgorithmsforimageandspeechrecognitiontasks.DCNNsarecomputationallyintensive,makingthemchallengingtoimplementonedgedevices.

Toaddressthischallenge,weproposeaDCNNaccelerationmethodbasedonheterogeneouscomputingplatforms.Heterogeneouscomputinginvolvestheuseofmultipletypesofprocessors,includingcentralprocessingunits(CPUs),graphicsprocessingunits(GPUs),andfield-programmablegatearrays(FPGAs)todistributecomputingtasksacrossdifferentprocessorsbasedontheirstrengths.

TheproposedsolutioninvolvesusinganFPGAasaco-processortoacceleratetheexecutionofDCNNs.TheFPGAisusedtoacceleratethemostcomputationallyintensivepartsoftheDCNNalgorithm,whiletheCPUandGPUareusedforothertasks.ThisapproachresultsinsignificantperformanceimprovementsovertraditionalCPU-basedsolutions.

TheadvantagesofusingheterogeneouscomputingforDCNNaccelerationaretwofold.First,itsignificantlyreducestheprocessingtimerequiredforDCNNstorunonedgedevices.Second,itreducestheenergyconsumptionrequiredtoexecutethesealgorithms,makingthemmoresuitableforbattery-powereddevices.

Theproposedsolutionhasthepotentialtorevolutionizevariousindustries.Forexample,itcouldbeusedtoenhancethecapabilitiesofsmarthomedevices,suchassecuritycamerasanddoorbells.Itcouldalsobeleveragedtoimprovetheaccuracyofmedicaldiagnosticimagingortoenablereal-timedecisionmakinginautonomousvehicles.

Inconclusion,ourproposedDCNNaccelerationmethodbasedonheterogeneouscomputingplatformsprovidesanefficientsolutionforexecutingmachinelearningappli

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论