




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc22.集合,则()A. B. C. D.3.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个4.已知圆x2+y2+2x-6y+5a=0关于直线y=x+b成轴对称图形,则A.(0,8) B.(-∞,8) C.(-∞,16)5.设是等差数列的前项和,若,则A. B. C. D.6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则()A. B. C. D.7.设,,,则()A. B. C. D.8.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.9.在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.810.不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.12.函数的定义域为___________.13.函数的部分图像如图所示,则的值为________.14.设,则函数是__________函数(奇偶性).15.若直线上存在点可作圆的两条切线,切点为,且,则实数的取值范围为.16.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.18.已知圆的圆心在轴上,且经过点,.(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)求圆的标准方程;(Ⅲ)过点的直线与圆相交于、两点,且,求直线的方程.19.已知向量,,,.(1)若,且,求x的值;(2)对于,,定义.解不等式;(3)若存在,使得,求k的取值范围.20.已知向量,.函数的图象关于直线对称,且.(1)求函数的表达式:(2)求函数在区间上的值域.21.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.2、C【解析】
先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.3、D【解析】
利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.4、D【解析】
根据圆关于直线成轴对称图形得b=4,根据二元二次方程表示圆得a<2,再根据指数函数的单调性得4a【详解】解:∵圆x2+y∴圆心(-1,3)在直线∴3=-1+b,解得b=4又圆的半径r=4+36-20a2>0b故选:D.【点睛】本题考查了直线与圆的位置关系,属中档题.5、A【解析】,,选A.6、D【解析】
根据任意角三角函数定义可求得;根据诱导公式可将所求式子化为,代入求得结果.【详解】由得:本题正确选项:【点睛】本题考查任意角三角函数值的求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.7、B【解析】
根据与特殊点的比较可得因为,,,从而得到,得出答案.【详解】解:因为,,,所以.故选:B【点睛】本题主要考查指数函数和对数函数的单调性与特殊点的问题,要熟记一些特殊点,如,,.8、A【解析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.9、B【解析】
由平均数与方差的计算公式,计算90,90,93,94,93五个数的平均数和方差即可.【详解】90,89,90,95,93,94,93,去掉一个最高分和一个最低分后是90,90,93,94,93,所以其平均数为,因此方差为.故选B【点睛】本题主要考查平均数与方差的计算,熟记公式即可,属于基础题型.10、D【解析】
把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、相交【解析】
根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.12、【解析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.13、【解析】
由图可得,,求出,得出,利用,然后化简即可求解【详解】由题图知,,所以,所以.由正弦函数的对称性知,所以答案:【点睛】本题利用函数的周期特性求解,难点在于通过图像求出函数的解析式和函数的最小正周期,属于基础题14、偶【解析】
利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.15、【解析】试题分析:若,则,直线上存在点可作和的两条切线等价于直线与圆有公共点,由圆心到直线的距离公式可得,解之可得.考点:点到直线的距离公式及直线与圆的位置关系的运用.【方法点晴】本题主要考查了点到直线的距离公式及直线与圆的位置关系的运用,涉及到圆心到直线的距离公式和不等式的求解,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及学生的推理与运算能力,本题的解答中直线上存在点可作和的两条切线等价于直线与圆有公共点是解答的关键.16、2【解析】试题分析:设圆柱的底面半径为r,高为h,底面积为S,体积为V,则有2πr=2⇒r=1π,故底面面积S=πr考点:圆柱的体积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】
(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最大值,进而可求出结果.【详解】(1)记该人在A公司第年收入为,在B公司连续工作年收入为,由题意可得:,,,;(2)由(1),当时,该人在A公司工资收入的总量为:(元);该人在B公司工资收入的总量为:(元)显然A公司工资总量高,所以应选择A公司;(3)令,则原问题即等价于求的最大值;当时,,若,则,即,解得;又,所以,因此,当时,;当时,.所以是数列的最大项,(元),即在A公司工作比在B公司工作的月工资收入最多可以多元.【点睛】本题主要考查数列的应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.18、(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】
(Ⅰ)利用垂直平分关系得到斜率及中点,从而得到结果;(Ⅱ)设圆的标准方程为,结合第一问可得结果;(Ⅲ)由题意可知:圆心到直线的距离为1,分类讨论可得结果.【详解】解:(Ⅰ)设的中点为,则.由圆的性质,得,所以,得.所以线段的垂直平分线的方程是.(II)设圆的标准方程为,其中,半径为().由圆的性质,圆心在直线上,化简得.所以圆心,,所以圆的标准方程为.(III)由(I)设为中点,则,得.圆心到直线的距离.(1)当的斜率不存在时,,此时,符合题意.(2)当的斜率存在时,设,即,由题意得,解得:.故直线的方程为,即.综上直线的方程或.【点睛】圆内一点为弦的中点时,则此点与圆心的连线和弦所在的直线垂直;解决圆的弦长有关问题,注意弦长一半、弦心距、半径构成的直角三角形的三边的勾股数之间的关系。19、(1)或(2)(3)【解析】
(1)由题,由可得,进而求解即可;(2)由题意得到,进而求解即可;(3)由可得,整理可得关于的函数,进而求解即可【详解】(1)由题,,因为,所以,则,因为,所以或(2)由题,,因为,所以,当时,,因为是以为最小正周期的周期函数,所以(3)由(1),由题,,若,则,则,因为,所以【点睛】本题考查共线向量的坐标表示,考查垂直向量的坐标表示,考查解三角函数的不等式20、(1);(2)【解析】
(1)转化条件得,由对称轴可得,再结合即可得解;(2)根据自变量的范围可得,利用整体法即可得解.【详解】(1)由题意,函数的图象关于直线对称,.即.又,,得,由得,故.则函数的表达式为(2),.,,则函数在区间上的值域为.【点睛】本题考查了向量数量积的坐标运算、函数表达式和值域的确定,考查了整体意识,属于基础题.21、(1);(2)①;②或.【解析】
(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古筝教室消防管理制度
- 公司婚嫁产假管理制度
- 培训机构台账管理制度
- 医院器械质量管理制度
- 单位食堂杂工管理制度
- 印刷车间台账管理制度
- 高效备考软件测试试题及答案大全
- 家庭保洁安全管理制度
- 公司应收汇票管理制度
- 农村饭堂使用管理制度
- 锌锭购销协议
- 静脉炎的预防及处理-李媛
- 云南省公路工程试验检测费用指导价
- 创业人生学习通超星期末考试答案章节答案2024年
- 3.1 歌曲《大海啊故乡》课件(17张)
- 古诗词诵读《客至》课件+2023-2024学年统编版高中语文选择性必修下册
- 上海市地方标准《办公楼物业管理服务规范》
- 四川省南充市2023-2024学年六年级下学期期末英语试卷
- 物理-陕西省2025届高三金太阳9月联考(金太阳25-37C)试题和答案
- 八年级历史下册 第五单元 第15课《钢铁长城》教案 新人教版
- 集团公司人事检查人力资源检查项目表及评分标准
评论
0/150
提交评论