微电网多目标优化调度策略研究_第1页
微电网多目标优化调度策略研究_第2页
微电网多目标优化调度策略研究_第3页
微电网多目标优化调度策略研究_第4页
微电网多目标优化调度策略研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微电网多目标优化调度策略研究摘要:微电网是一种新型的分布式电力系统,具有环保、高效、可靠等优良特性。在微电网中,电源与负载呈现多种多样的组合,因此如何制定科学有效的调度策略对于微电网的稳定运行非常重要。本文针对微电网的多目标优化问题,提出了一种基于遗传算法和模糊综合评价的调度策略。首先,对微电网系统进行建模,分析了微电网的功率平衡和能量管理等问题。然后,通过定义多个调度目标,并确定相应的权重参数,将微电网调度问题转化为多目标优化问题。接着,运用遗传算法优化求解多目标优化问题。在遗传算法搜索过程中,引入模糊综合评价方法,考虑调度目标之间的相互影响,提高了优化求解的效率和准确性。最后,通过案例仿真验证了所提出的调度策略的有效性和可行性。

关键词:微电网,多目标优化,遗传算法,模糊综合评价,能量管理。

Abstract:Microgridisanewtypeofdistributedpowersystemwithenvironmentalprotection,highefficiency,andreliability.Inmicrogrid,therearevariouscombinationsofpowersourcesandloads,sohowtodevelopeffectiveschedulingstrategiesisveryimportantforthestableoperationofmicrogrid.Inthispaper,aimingatthemulti-objectiveoptimizationproblemofmicrogrid,aschedulingstrategybasedongeneticalgorithmandfuzzycomprehensiveevaluationisproposed.Firstly,themicrogridsystemismodeled,andtheissuesofpowerbalanceandenergymanagementofmicrogridareanalyzed.Then,bydefiningmultipleschedulingobjectivesanddeterminingthecorrespondingweightparameters,theschedulingproblemofmicrogridistransformedintomulti-objectiveoptimizationproblem.Next,geneticalgorithmisusedtooptimizeandsolvethemulti-objectiveoptimizationproblem.Inthesearchprocessofgeneticalgorithm,thefuzzycomprehensiveevaluationmethodisintroducedtoconsidertheinfluenceofschedulingobjectivesoneachother,whichimprovestheefficiencyandaccuracyofoptimizationsolution.Finally,thevalidityandfeasibilityoftheproposedschedulingstrategyareverifiedbycasesimulation.

Keywords:Microgrid,multi-objectiveoptimization,geneticalgorithm,fuzzycomprehensiveevaluation,energymanagementNowadays,microgridshavebecomeapopularchoiceforenergymanagementduetotheirabilitytoprovidereliable,efficientandsustainablepowersupplytoconsumers.However,asthenumberofdistributedenergyresources(DERs)increases,themanagementandcontrolofmicrogridsbecomemorecomplex.Toovercomethisproblem,amulti-objectiveoptimizationstrategybasedongeneticalgorithmisproposedforenergymanagementinmicrogrids.

Inthisstrategy,theobjectivesincludingcostminimization,emissionreductionandloadbalanceareconsideredsimultaneouslytoobtaintheoptimalschedulingofDERs.Todealwiththeconflictsbetweentheseobjectives,afuzzycomprehensiveevaluationmethodisintroducedtoquantifythedegreeofsatisfactionforeachobjective.Bycombiningthefitnessvaluesofindividualsinthegeneticalgorithmwiththeircorrespondingcomprehensiveevaluationscores,anewfitnessfunctionisobtained,whichcanbetterreflecttheoverallperformanceofthemicrogridsystem.

Tovalidatetheeffectivenessoftheproposedschedulingstrategy,acasesimulationisimplementedbasedonarealmicrogridsystem.Thesimulationresultsshowthattheproposedstrategycanachievesignificantimprovementintermsofcostreduction,emissionreductionandloadbalance,comparedwithotherexistingmethods.Itdemonstratesthatthecombinationofgeneticalgorithmandfuzzycomprehensiveevaluationmethodcaneffectivelysolvethemulti-objectiveoptimizationproblemforenergymanagementinmicrogrids.

Inconclusion,theproposedmulti-objectiveoptimizationstrategybasedongeneticalgorithmandfuzzycomprehensiveevaluationmethodhasgreatpotentialtoimprovetheenergymanagementofmicrogrids.ItcanprovideareliableandefficientsolutionfortheoptimalschedulingofDERsinmicrogrids,leadingtobetterutilizationofrenewableenergysourcesandmoresustainabledevelopmentofthepowerindustryMoreover,theproposedapproachcanalsoenhancetheresilienceofmicrogridsbytakingintoaccountmultipleobjectives,suchasreducingenergycosts,minimizingcarbonemissions,andimprovingpowerquality.Byconsideringtheseobjectivessimultaneously,thesystemcanachieveabalancebetweeneconomic,environmental,andsocialfactors,leadingtoamoresustainableenergyfuture.

Additionally,themulti-objectiveoptimizationapproachcanalsoreducethecomplexityanduncertaintyofenergymanagementinmicrogrids.Theuseofgeneticalgorithmcanefficientlysearchfortheoptimalsolutioninalargesolutionspace,whilethefuzzycomprehensiveevaluationmethodcanhandletheuncertaintyandimprecisionofinputdataandsystemparameters.Thisway,theapproachcanprovidearobustandflexiblesolutionthatcanadapttodifferentoperatingconditionsandconstraints.

Furthermore,theproposedapproachcanalsofacilitatetheintegrationofnewrenewableenergysourcesandenergystoragetechnologiesintomicrogrids.Theflexibleandadaptivenatureoftheapproachallowsittoincorporatenewcomponentsandchangesystemconfigurations,enablingtheintegrationofemergingtechnologiesinthefuture.Inthisway,theapproachcancontributetothedevelopmentofamoresustainableandresilientpowersystemthatcanaccommodatetheincreasingdemandforrenewableenergy.

Insummary,themulti-objectiveoptimizationapproachbasedongeneticalgorithmandfuzzycomprehensiveevaluationmethodcanprovideareliable,efficient,andsustainablesolutionforenergymanagementinmicrogrids.Byconsideringmultipleobjectivessimultaneously,theapproachcanachieveabalancebetweeneconomic,environmental,andsocialfactors,leadingtoamoresustainableenergyfuture.Theapproachcanalsoreducethecomplexityanduncertaintyofenergymanagement,facilitatetheintegrationofnewtechnologies,andenhancetheresilienceofmicrogridsFurthermore,thefuzzycomprehensiveevaluationmethodcanassistintheoptimalallocationandschedulingofenergyresourcesinmicrogrids.Thisiscrucialinensuringthattheavailableenergyresourcesareutilizedefficientlyandmeetingthedemandsofthecustomersinthemostcost-effectiveway.Themethodtakesintoaccountvariousfactorssuchasloaddemand,renewableenergyavailability,energystoragecapacity,andgridconstraintstodeterminetheoptimalallocationandschedulingofenergyresources.

Anotheradvantageofusingthefuzzycomprehensiveevaluationmethodisitsabilitytoconsideruncertaintiesandvariabilityassociatedwithrenewableenergysources.Unlikeconventionalpowersources,renewableenergysourcessuchassolarandwindpowerareintermittentandaffectedbyweatherconditions.Thefuzzycomprehensiveevaluationmethodcanincorporatetheseuncertaintiesinthedecision-makingprocess,thusimprovingtheoverallreliabilityofthemicrogridsystem.

Moreover,thefuzzycomprehensiveevaluationmethodcanbeusedtoanalyzetheperformanceofenergystoragesystemsinmicrogrids.Themethodcanevaluatetheeffectivenessofenergystoragesystemsinmitigatingthevariabilityofrenewableenergysourcesandreducingpeakdemandonthegrid.Thisanalysiscanleadtotheidentificationofpotentialimprovementsthatcanbemadetotheenergystoragesystems,leadingtotheirenhancedperformanceandgreaterefficiency.

Inconclusion,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论