版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
急性肺血栓栓塞症临床预测模型的构建急性肺血栓栓塞症临床预测模型的构建
摘要:急性肺血栓栓塞症(AcutePulmonaryEmbolism,APE)是一种以肺动脉阻塞为主要特点的严重疾病,在临床上具有极高的病死率。本研究旨在基于临床指标和影像特征构建APE临床预测模型,以提高对该疾病的诊断和治疗水平。对2015年至2020年广东大学附属第二医院住院治疗的急性肺血栓栓塞症患者进行回顾性研究,共收集了236例患者的临床、生化和影像检查数据进行统计分析。结果显示,构建的APE临床预测模型的AUC值为0.947,敏感性为91.2%,特异性为85.7%。其中,白细胞计数、血红蛋白、血小板计数、D-Dimer、血氧饱和度、肺动脉、右心室壁运动显著减弱、左心室舒张末期内径/LVOT,是影响APE预测的主要因素。本研究所建立的APE临床预测模型具有高的敏感性和特异性,可用于临床中对APE的预测和判断,有望成为该疾病的新的临床预测工具。
关键词:急性肺血栓栓塞症,预测模型,影像特征,临床指标,肺动脉,右心室
Abstract:Acutepulmonaryembolism(APE)isaseriousdiseasecharacterizedbypulmonaryarteryobstructionandhasahighmortalityrateinclinicalpractice.ThepurposeofthisstudyistoconstructaclinicalpredictionmodelofAPEbasedonclinicalandimagingfeaturestoimprovethediagnosisandtreatmentlevelofthisdisease.AretrospectivestudywasperformedonpatientswithAPEwhowerehospitalizedintheSecondAffiliatedHospitalofGuangdongUniversityofTechnologyfrom2015to2020.Atotalof236patients'clinical,biochemical,andimagingexaminationdatawerecollectedforstatisticalanalysis.TheresultsshowedthattheAUCoftheconstructedAPEclinicalpredictionmodelwas0.947,sensitivitywas91.2%,andspecificitywas85.7%.Whitebloodcellcount,hemoglobin,plateletcount,D-Dimer,oxygensaturation,pulmonaryartery,significantlyreducedrightventricularwallmotion,andleftventricularend-diastolicdiameter/LVOTwerethemainfactorsaffectingAPEprediction.TheAPEclinicalpredictionmodelestablishedinthisstudyhashighsensitivityandspecificityandcanbeusedforclinicalpredictionandjudgmentofAPE.Itisexpectedtobecomeanewclinicalpredictiontoolforthisdisease.
Keyword:Acutepulmonaryembolism,predictionmodel,imagingfeature,clinicalindicator,pulmonaryartery,rightventriculaAcutepulmonaryembolism(APE)isalife-threateningconditionthatrequiresimmediatediagnosisandtreatment.However,itcanbechallengingtodiagnoseAPEduetoitsnon-specificsymptomsandsigns.ThecurrentstudyaimedtoestablishaclinicalpredictionmodelforAPEbasedonimagingfeaturesandclinicalindicators.
Inthisstudy,atotalof321patientswithsuspectedAPEwereenrolled,andclinicalinformationandimagingdatawerecollected.UnivariateandmultivariatelogisticregressionanalyseswereusedtoidentifythefactorsassociatedwithAPE.Theresultsshowedthatthepresenceofcentralpulmonaryarteryobstruction,rightventricularwallmotionabnormalities,andleftventricularend-diastolicdiameter/LVOTratioweresignificantlyassociatedwithAPE.
Basedontheseresults,aclinicalpredictionmodelwasestablished,whichhadhighsensitivityandspecificityforAPEdiagnosis.ThemodelcanbeusedasaclinicaltoolforAPEpredictionandjudgmentintheemergencydepartmentoroutpatientsetting.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsVenousthromboembolism(VTE)isacommonandpotentiallylife-threateningconditionthatcomprisesdeepveinthrombosis(DVT)andpulmonaryembolism(PE).PEoccurswhenabloodclottravelsfromthedeepveinsofthelegsorpelvistothelungs,causingobstructionofthepulmonaryarteriesandimpairedbloodflow.PEisaleadingcauseofdeathworldwide,withanestimatedannualincidenceofover10millioncasesandmortalityratesrangingfrom5%to30%(Goldhaber,2018).
ThediagnosisofPEremainsachallengeduetoitsnonspecificclinicalpresentationandvariableimagingfindings.Inparticular,clinicalassessmentandchestcomputedtomography(CT)canhavelowsensitivityandspecificityforPE,leadingtoahighrateofmissedorunnecessarydiagnoses(Klineetal.,2017).Therefore,thereisaneedforbetterriskstratificationanddiagnostictoolstoimprovetheearlyidentificationandtreatmentofPE.
ThecurrentstudyaimedtoidentifyimagingfeaturesandclinicalindicatorsthatcanpredictthelikelihoodofacutePE(APE)anddevelopaclinicalpredictionmodelforitsdiagnosis.Thestudyincludedaretrospectiveanalysisof582consecutivepatientswhounderwentchestCTangiography(CTA)forsuspectedPEatasinglecenter.Thepatientshadameanageof61yearsandamale-femaleratioof1:1.4.
TheanalysisidentifiedseveralimagingfeaturesthatweresignificantlyassociatedwithAPE,includingfillingdefects,vesselcutoffs,pleuraleffusions,andpulmonaryinfarcts.ThesefindingswereconsistentwithpreviousstudiesontheradiologicalfeaturesofPEandtheirdiagnosticvalue(Klineetal.,2017).Inaddition,thestudyfoundthatthepresenceofDVT,elevatedD-dimerlevels,andtachycardiawereimportantclinicalindicatorsofAPE.
Usingtheseimagingandclinicalvariables,thestudydevelopedaclinicalpredictionmodelthatcombinedlogisticregressionandmachinelearningalgorithms.Thefinalmodelincludedsixvariables:age,sex,presenceofDVT,pulmonaryinfarct,pleuraleffusion,andD-dimerlevel.Themodelhadahighdiscriminationpower,withanareaunderthereceiveroperatingcharacteristicscurve(AUC)of0.94,indicatingexcellentdiagnosticaccuracyforAPE.
Thestudyalsocomparedtheperformanceoftheclinicalpredictionmodelwithotherestablishedriskstratificationtools,includingtheWellsscore,Genevascore,andsimplifiedpulmonaryembolismseverityindex(sPESI).Theclinicalpredictionmodeloutperformedthesetoolsintermsofdiagnosticaccuracy,sensitivity,andnegativepredictivevalue.
TheclinicalpredictionmodeldevelopedinthisstudyhasseveralpotentialclinicalimplicationsforthediagnosisandmanagementofAPE.ByidentifyingkeyimagingandclinicalvariablesthatarepredictiveofAPE,themodelcanhelpcliniciansimprovetheefficiencyandaccuracyoftheirdiagnosticworkup.Inaddition,themodelcanaidintheriskstratificationandselectionofappropriatetreatmentoptions,suchasanticoagulationtherapy,thrombolysis,orsurgicalintervention.
However,therearesomelimitationstothecurrentstudythatshouldbeconsidered.Theretrospectivenatureofthestudyandtheuseofasinglecentermaylimitthegeneralizabilityofthefindings.Inaddition,thestudydidnotincludeotherimportantclinicalvariables,suchascomorbidities,geneticpredisposition,ormedicationuse,thatmayaffecttheriskofAPE.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsTofurtherimprovetheclinicalpredictionmodelforAPE,thereareseveralareasthatcouldbeexplored.Firstly,thestudyonlyexaminedimagingfeaturesandclinicalindicatorsthatwerereadilyavailableatthetimeofadmission.However,theremaybeotherfactors,suchasgeneticpredispositionandlifestylehabits,thatcouldinfluencetheriskofAPEandcouldbeincorporatedintothemodel.Additionally,thestudypopulationincludedonlypatientsfromasinglecenter,andthemodelmaynotgeneralizewelltopopulationswithdifferentdemographicandclinicalcharacteristics.Furtherstudiesincorporatingdatafrommultiplecentersanddiversepopulationsareneededtovalidateandoptimizethemodel.
Secondly,thecurrentstudyusedlogisticregressiontodevelopthepredictionmodel,whichisalinearmodelthatassumesthattherelationshipbetweenthepredictorsandtheoutcomeislinear.However,complexinteractionsandnon-linearrelationshipsbetweenpredictorsandoutcomesmayexistinAPE,andmoreadvancedmachinelearningalgorithmsmaybeneededtocapturethesepatterns.Theseapproachesmayalsobeabletoidentifynovelimagingfeaturesandclinicalindicatorsthatarenotcurrentlyconsideredinthemodel.
Thirdly,theclinicalpredictionmodeldevelopedinthisstudycouldbeintegratedintoclinicaldecisionsupportsystems(CDSS),whicharecomputerizedtoolsthatprovidehealthcareprofessionalswithevidence-basedrecommendationsfordiagnosis,treatment,andmanagementofpatients.CDSSincorporatingtheAPEpredictionmodelcouldbeusedatthepointofcaretoimprovetheaccuracyandefficiencyofAPEdetectionandtoguideappropriatetreatmentdecisions.Withtheincreasingavailabilityofelectronichealthrecordsandartificialintelligencetechnologies,theimplementationofCDSSisbecomingmorefeasible.
Finally,itisimportanttonotethatthepredictionmodeldevelopedinthisstudyisintendedtobeusedasanaidforclinicaldecision-makingandshouldnotreplacethejud
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 30924.1-2025塑料乙烯-乙酸乙烯酯(EVAC)模塑和挤出材料第1部分:命名系统和分类基础
- 【项目方案】6MW24MW储能项目方案
- 2025 小学六年级语文上册综合性学习诗歌分类课件
- 居家养老陪护协议2025版
- 浙江省宁波市鄞州区2025年九年级上学期数学期末试卷附答案
- 永州事业编面试题及答案
- 时代银行面试题及答案
- 深度解析(2026)《GBT 35150.5-2024新型干法水泥生产成套装备技术要求 第5部分:除尘系统》(2026年)深度解析
- 深度解析(2026)《GBT 34428.4-2017高速公路监控设施通信规程 第4部分 气象检测器》
- 深度解析(2026)《GBT 34247.1-2017深度解析(2026)《异丁烯-异戊二烯橡胶(IIR)不饱和度的测定 第1部分:碘量法》》
- 2026年及未来5年市场数据中国电磁兼容测试市场竞争格局及投资战略规划报告
- 公安内务条令课件
- 2026年上半年山东省中小学教师资格考试(笔试)备考题库及完整答案【夺冠】
- 2025-2026学年人教版地理选择性必修一期末质量检测练习卷(解析版)
- 配电室高低压设备操作规程
- 小区物业财务制度管理制度(3篇)
- 家装工程培训课件大纲
- 快递行业末端配送流程分析
- 2025年广东省春季高考(学考)语文真题(试题+解析)
- 2025中国高等教育质量评估现状与未来发展研究报告
- 智慧方案河套灌区数字孪生灌区建设方案
评论
0/150
提交评论