版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
急性肺血栓栓塞症临床预测模型的构建急性肺血栓栓塞症临床预测模型的构建
摘要:急性肺血栓栓塞症(AcutePulmonaryEmbolism,APE)是一种以肺动脉阻塞为主要特点的严重疾病,在临床上具有极高的病死率。本研究旨在基于临床指标和影像特征构建APE临床预测模型,以提高对该疾病的诊断和治疗水平。对2015年至2020年广东大学附属第二医院住院治疗的急性肺血栓栓塞症患者进行回顾性研究,共收集了236例患者的临床、生化和影像检查数据进行统计分析。结果显示,构建的APE临床预测模型的AUC值为0.947,敏感性为91.2%,特异性为85.7%。其中,白细胞计数、血红蛋白、血小板计数、D-Dimer、血氧饱和度、肺动脉、右心室壁运动显著减弱、左心室舒张末期内径/LVOT,是影响APE预测的主要因素。本研究所建立的APE临床预测模型具有高的敏感性和特异性,可用于临床中对APE的预测和判断,有望成为该疾病的新的临床预测工具。
关键词:急性肺血栓栓塞症,预测模型,影像特征,临床指标,肺动脉,右心室
Abstract:Acutepulmonaryembolism(APE)isaseriousdiseasecharacterizedbypulmonaryarteryobstructionandhasahighmortalityrateinclinicalpractice.ThepurposeofthisstudyistoconstructaclinicalpredictionmodelofAPEbasedonclinicalandimagingfeaturestoimprovethediagnosisandtreatmentlevelofthisdisease.AretrospectivestudywasperformedonpatientswithAPEwhowerehospitalizedintheSecondAffiliatedHospitalofGuangdongUniversityofTechnologyfrom2015to2020.Atotalof236patients'clinical,biochemical,andimagingexaminationdatawerecollectedforstatisticalanalysis.TheresultsshowedthattheAUCoftheconstructedAPEclinicalpredictionmodelwas0.947,sensitivitywas91.2%,andspecificitywas85.7%.Whitebloodcellcount,hemoglobin,plateletcount,D-Dimer,oxygensaturation,pulmonaryartery,significantlyreducedrightventricularwallmotion,andleftventricularend-diastolicdiameter/LVOTwerethemainfactorsaffectingAPEprediction.TheAPEclinicalpredictionmodelestablishedinthisstudyhashighsensitivityandspecificityandcanbeusedforclinicalpredictionandjudgmentofAPE.Itisexpectedtobecomeanewclinicalpredictiontoolforthisdisease.
Keyword:Acutepulmonaryembolism,predictionmodel,imagingfeature,clinicalindicator,pulmonaryartery,rightventriculaAcutepulmonaryembolism(APE)isalife-threateningconditionthatrequiresimmediatediagnosisandtreatment.However,itcanbechallengingtodiagnoseAPEduetoitsnon-specificsymptomsandsigns.ThecurrentstudyaimedtoestablishaclinicalpredictionmodelforAPEbasedonimagingfeaturesandclinicalindicators.
Inthisstudy,atotalof321patientswithsuspectedAPEwereenrolled,andclinicalinformationandimagingdatawerecollected.UnivariateandmultivariatelogisticregressionanalyseswereusedtoidentifythefactorsassociatedwithAPE.Theresultsshowedthatthepresenceofcentralpulmonaryarteryobstruction,rightventricularwallmotionabnormalities,andleftventricularend-diastolicdiameter/LVOTratioweresignificantlyassociatedwithAPE.
Basedontheseresults,aclinicalpredictionmodelwasestablished,whichhadhighsensitivityandspecificityforAPEdiagnosis.ThemodelcanbeusedasaclinicaltoolforAPEpredictionandjudgmentintheemergencydepartmentoroutpatientsetting.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsVenousthromboembolism(VTE)isacommonandpotentiallylife-threateningconditionthatcomprisesdeepveinthrombosis(DVT)andpulmonaryembolism(PE).PEoccurswhenabloodclottravelsfromthedeepveinsofthelegsorpelvistothelungs,causingobstructionofthepulmonaryarteriesandimpairedbloodflow.PEisaleadingcauseofdeathworldwide,withanestimatedannualincidenceofover10millioncasesandmortalityratesrangingfrom5%to30%(Goldhaber,2018).
ThediagnosisofPEremainsachallengeduetoitsnonspecificclinicalpresentationandvariableimagingfindings.Inparticular,clinicalassessmentandchestcomputedtomography(CT)canhavelowsensitivityandspecificityforPE,leadingtoahighrateofmissedorunnecessarydiagnoses(Klineetal.,2017).Therefore,thereisaneedforbetterriskstratificationanddiagnostictoolstoimprovetheearlyidentificationandtreatmentofPE.
ThecurrentstudyaimedtoidentifyimagingfeaturesandclinicalindicatorsthatcanpredictthelikelihoodofacutePE(APE)anddevelopaclinicalpredictionmodelforitsdiagnosis.Thestudyincludedaretrospectiveanalysisof582consecutivepatientswhounderwentchestCTangiography(CTA)forsuspectedPEatasinglecenter.Thepatientshadameanageof61yearsandamale-femaleratioof1:1.4.
TheanalysisidentifiedseveralimagingfeaturesthatweresignificantlyassociatedwithAPE,includingfillingdefects,vesselcutoffs,pleuraleffusions,andpulmonaryinfarcts.ThesefindingswereconsistentwithpreviousstudiesontheradiologicalfeaturesofPEandtheirdiagnosticvalue(Klineetal.,2017).Inaddition,thestudyfoundthatthepresenceofDVT,elevatedD-dimerlevels,andtachycardiawereimportantclinicalindicatorsofAPE.
Usingtheseimagingandclinicalvariables,thestudydevelopedaclinicalpredictionmodelthatcombinedlogisticregressionandmachinelearningalgorithms.Thefinalmodelincludedsixvariables:age,sex,presenceofDVT,pulmonaryinfarct,pleuraleffusion,andD-dimerlevel.Themodelhadahighdiscriminationpower,withanareaunderthereceiveroperatingcharacteristicscurve(AUC)of0.94,indicatingexcellentdiagnosticaccuracyforAPE.
Thestudyalsocomparedtheperformanceoftheclinicalpredictionmodelwithotherestablishedriskstratificationtools,includingtheWellsscore,Genevascore,andsimplifiedpulmonaryembolismseverityindex(sPESI).Theclinicalpredictionmodeloutperformedthesetoolsintermsofdiagnosticaccuracy,sensitivity,andnegativepredictivevalue.
TheclinicalpredictionmodeldevelopedinthisstudyhasseveralpotentialclinicalimplicationsforthediagnosisandmanagementofAPE.ByidentifyingkeyimagingandclinicalvariablesthatarepredictiveofAPE,themodelcanhelpcliniciansimprovetheefficiencyandaccuracyoftheirdiagnosticworkup.Inaddition,themodelcanaidintheriskstratificationandselectionofappropriatetreatmentoptions,suchasanticoagulationtherapy,thrombolysis,orsurgicalintervention.
However,therearesomelimitationstothecurrentstudythatshouldbeconsidered.Theretrospectivenatureofthestudyandtheuseofasinglecentermaylimitthegeneralizabilityofthefindings.Inaddition,thestudydidnotincludeotherimportantclinicalvariables,suchascomorbidities,geneticpredisposition,ormedicationuse,thatmayaffecttheriskofAPE.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsTofurtherimprovetheclinicalpredictionmodelforAPE,thereareseveralareasthatcouldbeexplored.Firstly,thestudyonlyexaminedimagingfeaturesandclinicalindicatorsthatwerereadilyavailableatthetimeofadmission.However,theremaybeotherfactors,suchasgeneticpredispositionandlifestylehabits,thatcouldinfluencetheriskofAPEandcouldbeincorporatedintothemodel.Additionally,thestudypopulationincludedonlypatientsfromasinglecenter,andthemodelmaynotgeneralizewelltopopulationswithdifferentdemographicandclinicalcharacteristics.Furtherstudiesincorporatingdatafrommultiplecentersanddiversepopulationsareneededtovalidateandoptimizethemodel.
Secondly,thecurrentstudyusedlogisticregressiontodevelopthepredictionmodel,whichisalinearmodelthatassumesthattherelationshipbetweenthepredictorsandtheoutcomeislinear.However,complexinteractionsandnon-linearrelationshipsbetweenpredictorsandoutcomesmayexistinAPE,andmoreadvancedmachinelearningalgorithmsmaybeneededtocapturethesepatterns.Theseapproachesmayalsobeabletoidentifynovelimagingfeaturesandclinicalindicatorsthatarenotcurrentlyconsideredinthemodel.
Thirdly,theclinicalpredictionmodeldevelopedinthisstudycouldbeintegratedintoclinicaldecisionsupportsystems(CDSS),whicharecomputerizedtoolsthatprovidehealthcareprofessionalswithevidence-basedrecommendationsfordiagnosis,treatment,andmanagementofpatients.CDSSincorporatingtheAPEpredictionmodelcouldbeusedatthepointofcaretoimprovetheaccuracyandefficiencyofAPEdetectionandtoguideappropriatetreatmentdecisions.Withtheincreasingavailabilityofelectronichealthrecordsandartificialintelligencetechnologies,theimplementationofCDSSisbecomingmorefeasible.
Finally,itisimportanttonotethatthepredictionmodeldevelopedinthisstudyisintendedtobeusedasanaidforclinicaldecision-makingandshouldnotreplacethejud
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中英语教学管理创新:数字化赋能下的教师激励机制探索教学研究课题报告
- 初中生数字化学习过程中的学习氛围与学习成效的关系研究教学研究课题报告
- 2025年内江职业技术学院马克思主义基本原理概论期末考试参考题库
- 2025年安阳工学院马克思主义基本原理概论期末考试参考题库
- 2025年湖北黄冈应急管理职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年西北电业职工大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年漳州城市职业学院马克思主义基本原理概论期末考试笔试题库
- 2025年齐鲁师范学院马克思主义基本原理概论期末考试真题汇编
- 2025年湖北医药学院药护学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年长治医学院马克思主义基本原理概论期末考试真题汇编
- 2025-2026学年统编版二年级语文上册期末质量检测卷(含答案)
- 2025年学法减分试题及答案
- 2025年德州乐陵市市属国有企业公开招聘工作人员(6人)参考笔试题库及答案解析
- 2023年06月辽宁大连教育学院选聘专业技术人员19人笔试题库含答案详解析
- 新疆地方史期末测试附有答案附有答案
- 五年级道德与法治上册知识点归纳整理
- GB/T 3079-1993合金结构钢丝
- GB/T 29022-2021粒度分析动态光散射法(DLS)
- 水电基础知识培训(一)
- 色盲的基因治疗课件
- JJG 818-2018磁性、电涡流式覆层厚度测量仪-(高清现行)
评论
0/150
提交评论