粘性土与粘土的区别_第1页
粘性土与粘土的区别_第2页
粘性土与粘土的区别_第3页
粘性土与粘土的区别_第4页
粘性土与粘土的区别_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

粘性土与粘土的区别:粘性土是指塑性指数大于10的土.粘性土分为粉质黏土和黏土,粘土是指塑性指数大于17的土.粉质粘土和粘土的区别:粉质粘土,是粘土中具体细分,粉质多但也是粘土粘土不感觉有沙粒,大多很细的粉末,一般没有沙粒.亚粘土感觉有沙粒,小土粒易用手指捻碎砂土和粘土的区别是什么?砂土的“砂”表示什么含义?粘土的“粘”表示什么含义?砂土和粘土的称谓只是一种泛指的说法,准确的称呼为无粘性土和粘性土,划分标准粗略为看粒径大小(即砂粒、粉粒、粘粒等)理论上判断方法应用塑性指数(Ip)划分,当其小于等于3时,为砂土,当大于3时,一般认为是粘性土,塑性指数需要在实验室内通过界限含水量试验测定。但在实际中,砂土无法进行该项试验,一般是通过颗粒分析方法(洗筛法+比重计法)分析其颗粒构成,然后进行判断所谓砂土和粘土是按照他们的粒径的大小分类来说的.不是一般所说的砂,或者粘了!具体的参照土质土力学教材,讲的很清楚。什么是高岭土?什么是砂性土?什么是亚粘土高岭土在化学组成上的主要特点是铝含量高,助熔剂含量低。其产地遍布各地,南方多原生高岭土,北方多粘积高岭土砂性土:它既具有一定数量的粗粒组,使路基具有足够的强度和水稳定性,又能保持一定数量的细颗粒,使土具有一定的粘性,不至于过分松散。砂性土的颗粒组成接近于最佳级配。因此,砂性土修筑的路基适应于行车时的压实作用,能构成平整坚实的路基表面,雨天不泥泞,晴天不扬尘。亚粘土:在建筑工程中,亚粘土是介于粘土和砂土之间的一种地基土它的特征接近粘土,但颗粒较粘土粗,可塑范围较粘土小。粉质粘土(亚粘土)属于粘性土,在现行规范中规定,粘性土的分类是按土的塑性指数来划分的,如下:塑性指数>17的称粘土;17>液性指数>10的称粉质粘土,10>塑性指数23的称为粉土,砂土的塑性指数一般都小于3。塑性指数越小,说明土的颗粒越粗,可塑的范围越小。土层的软硬,不仅取决于名称,主要取决于土的含水量和空隙率。对粘性土来说,有一个指标叫液性指数,是判断土的软硬状态的。如下:液性指数V0坚硬;0<液性指数<0.25硬塑;0.25<液性指数<0.75可塑;0.75<液性指数京软塑;液性指数>1流塑。液性指数与土的类别及含水量有关,同一种土,含水量越大则液性指数越大,土质越软。所以,亚粘土地层如果含水量不是很大,是不属于软弱地层的,完全可以作为建筑物基础的持力层的。谁能告诉我关于膨润土,粘土,高岭土,之间的具体区别膨润土(Bentonite)按译音、成因及用途又称斑脱岩、膨土岩等。是以蒙脱石(也称微晶高岭石、胶岭石)为主要成分的粘土岩一蒙脱石粘土岩,常含少量伊利石、高岭石及沸石、长石、方解石等。蒙脱石为少量碱及碱土金属的含水铝硅酸盐矿物。其化学式为Nax(H2O)4{(Al2〜xMg0.33)[Si4010](0H)2}。膨润土的主要成份是蒙脱石,是由两层硅氧四面体中间夹一层铝氧八面体组成的层状粘土矿物。根据蒙脱石所含的可交换阳离子种类、含量及结晶化学性质的不同,分为钠基、钙基、镁基、铝(氢)基等膨润土。膨润土的应用领域非常广泛。自1920年美国开始应用膨润土代替一般粘土,用作铸造型砂粘结剂以来,其应用领域在机械、冶金、钻探、石油、化工、食品、环保等行业中不断扩展。据不完全统计,中国目前膨润土产品年产销量约270万吨,其中用于铸造型砂100〜110万吨,用于钻井泥浆70万吨,用于冶金球团45万吨,用于油脂脱色(活性白土)20万吨,用于其他20〜30万吨膨润土也叫斑脱岩或膨土岩。它最早发现于美国的怀俄明州的古地层中,为黄绿色的粘土;因加水后膨胀成糊状,后来人们就把这种性质的粘土,统称为膨润土。膨润土的主要矿物成分是蒙脱石,含量在85%〜90%,另含少量长石、石英、贝得石、方解石及火山玻璃。可呈白色、含杂质时呈淡绿、灰白、粉红等色。可以成致密块状,也可为松散的土状,用手指搓磨时有滑感,小块体加水后体积胀大数倍至数十倍,在水中呈悬浮状,水少时呈糊状。膨润土有很强的阳离子交换性能,可用于除去食油的毒素、汽油和煤油的净化及废水处理;由于有很好的吸水膨胀性能以及分散、悬浮和造浆性,可用于钻井泥浆、阻燃(悬浮灭火),可在造纸工业中做填料,以及优化涂料的性能,如附着力、遮盖力、耐水性、耐洗刷性等;由于有很好的粘结力,还可代替淀粉用于纺织工业中的纱线上浆,既节粮,又不起毛,浆后还不发出异味。膨润土(蒙脱石)因有良好的物理化学性能,可做粘结剂、悬浮剂、触变剂、稳定剂、净化脱色剂、充填料、饲料、催化剂等,广泛用于农业、轻工业及化妆品、药品等领域,是一种用途广泛的天然矿物材料。粘土:是一种含水铝硅酸盐矿物,一种广泛分布的胶态无光泽有粘性的土,潮湿时是可塑的,焙烧后是坚硬的,其主要组成是分解了的火成岩与变质岩,其基本组成是高岭土与其他含氢的铝土矿物。粘土矿物是一种微小的晶体,科学家们发现,粘土矿物晶体中存在一种有趣的缺陷结构,这种结构可能保存相当多的信息,从而决定晶体生长的取向和构型。,粘土具有独特的可塑性与结合性,即成型性能与烧成性能高岭土高岭土主要由小于2个微米的微小片状、管状、叠片状等高岭石簇矿物(高岭石、地开石、珍珠石、埃洛石等组成,理想的化学式为AL203-2Si02-2H20,其主要矿物成分是高岭石和多水高岭石,除高岭石簇矿物外,还有蒙脱石、伊利石、叶腊石、石英和长石等其它矿物伴生。高岭土的化学成分中含有大量的AL203、Si02和少量的Fe203、Ti02以及微量的K20、Na20、Ca0和Mg0等。中国是世界上最早发现和利用高岭土的国家。远在3000年前的商代所出现的刻纹白陶,就是以高岭土制成。江西景德镇生产的瓷器名扬中外,历来有〃白如玉、明如镜、薄如纸、声如罄〃的美誉。现在国际上通用的高岭土学名一Kaolin,就是来源于景德镇东郊的高岭村边的高岭山。据史料记载,法国传教士昂特柯莱,在1712年一份著名的书简中向欧洲专门介绍过高岭山上瓷土的特点,该文对全2欢迎下载世界的瓷器制造业产生过深远的影响,于是高岭土在欧洲逐渐得名,并成为该类瓷土在国际上的通用名词。高岭土的可塑性、粘结性、一定的干燥强度、烧结性及烧后白度等特殊性能,使其成为陶瓷生产的主要原料;洁白、柔软、高度分散性、吸附性及化学随性等优良工艺性能,使其在造纸工业上得到广泛的应用。此外,高岭土在橡胶、塑料、耐火材料、石油精炼等工业部门以及农业和国防尖端技术领域亦有广泛用途。提纯?根据用途和需要,可以进行加工,处理和提纯。它们都可以用来制造活性白土:膨润土膨润土的主要矿物成份为蒙脱石,是天然的层状铝硅酸盐物质,矿物内部可形成大量的空洞和很大的内表面积,对极性和非极性分子有很强的物理吸附能力,在自然状态下,膨润土的内部孔洞处于堵塞状态,经过处理加工得以活化,这种经加工处理后的膨润土称为“活性白土”。其生产工艺:将膨润土矿粗选(除砂石及有机杂质)一粉碎至200目一酸活化一离心分离一一次洗涤一二次洗涤一三次洗涤一四次洗涤一中知一离心分离一烘干、粉碎一活性白土。粘土天然粘土经酸处理后,称为酸性白土也称活性白土。它的主要成分是硅藻土,其本身就已有活性。活性白土的化学组成为SiO2:(50〜70)w%;Al2O3:(10〜16)w%;Fe2O3:(2〜4)w%;MgO:(1〜6)w%等。活性白土的化学组成随所用原料粘土和活化条件不同而有很大差别,但一般认为吸附能力和化学组成关系不大。主要用于润滑油及动植物油脂的脱色精制,石油馏分的脱色或脱水及溶剂的精制等。高岭土高岭土制造活性白土的具体工艺我不是很清楚,不过分析其组成,我想类似粘土,可以通过酸化处理到达目的。经验交流:岩土的性质描述以及各种分类H.1一般规定H.1.1岩石的描述应包括地质年代、地质名称、风化程度、颜色、主要矿物、结构、构造和岩石质量指标RQD。对沉积岩应着重描述沉积物的颗粒大小、形状、胶结物成分和胶结程度;对岩浆岩和变质岩应着重描述矿物结晶大小和结晶程度,根据岩石质量指标RQD,可分为好的(RQD>90)、较好的(RQD=75-90)、较差的(RQD=50-75)、差的(RQD=25-50)和极差的(RQD<25)。H.1.2岩体的描述应包括结构面、结构体、岩层厚度和结构类型,并宜符合下列规定:1结构面的描述包括类型、性质、产状、组合形式、发育程度、延展情况、闭合程度、粗糙程度、充填情况和充填物性质以及充水性质等,2结构体的描述包括类型、形状、大小和结构体在围岩中的受力情况等,3岩层厚度分类应按表H.1.2执行。H.1.3除按颗粒级配或塑性指数定名外,土的综合定名应符合下列规定:1对特殊成因和年代的土类应结合其成因和年代特征定名;2对特殊性土,应结合颗粒级配、塑性指数定名;3对混合土,应

冠以主要含有的土类定名;4对同一土层中相间呈韵律沉积,当薄层与厚层的厚度比大于1/3时,宜定为“夹层”;厚度比小于1/10的土层,且多次出现时,宜定为“夹薄层”5当土层厚度大于0.5m时,宜单独分层。H.1.4土的鉴定应在现场描述的基础上,结合室内试验的开土记录和试验结果综合确定.土的描述应符合下列规定:1碎石土应描述颗粒级配、颗粒形状、颗粒排列、母岩成分、风化程度、充填物的性质和充填程度、密实度等;2砂土应描述颜色、矿物组成、颗粒级配、颗粒形状、粘粒含量、湿度、密实度等;3粉土应描述颜色、包含物、湿度、密实度、摇震反应、光泽反应、干强度、韧性等;4粘性土应描述颜色、状态、包含物、光泽反应、摇震反应、干强度、韧性、土层结构等;5特殊性土除应描述上述相应土类规定的内容外,尚应描述其特殊成分和特殊性质;如对淤泥尚需描述嗅味,对填土尚需描述物质成分、堆积年代、密实度和厚度的均匀程度等;6对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度和层理特征。H.2野外描述H.2.1岩、土野外描述的目的是:确定岩、土名称和划分层次、厚度,鉴别成分、状态、湿度、成因类型、地质时代及工程地质特征,为地基的建筑性能和土、石材以及围岩的评价取得基本的第一手资料。H.2.2野外编录描述应对地基土进行综合定名。综合定名,除按颗粒级配或塑性指数定名外,尚应符合下列规定:1对特殊成因和年代的土类应结合其成因和年代特征定名,如新近堆积砂质粉土、残坡积碎石土等;2对特殊性土,应结合颗粒级配或塑性指数综合定名,如淤泥质粘土、碎石素填土等;3对同一土层中相间成韵律沉积、薄层厚度大于20厘米的地基土层,当薄层与厚层的厚度比为1/10-1/3时,宜定名为“夹层”,厚的土层写在前面,如粘土夹粉砂层;当厚度比大于1/3时,宜定名为“互层”,如粘土一粉砂互层:厚度比小于1/10的土层且有规律地多次出现时,宜定名为“夹薄层”,如粘土夹薄层粉砂;小于20厘米的一般可不单独分层,在描述中指明即可,但有特殊要求的除外;4对由坡积、洪积、冰水沉积形成的、颗粒级配呈不连续状、细粒、巨粒混杂的土,应判定为混合土。当碎石土中的粉粒和粘粒含量超过25%时,定为I类混合土;当细粒土中砾粒、卵石粒、漂

石粒含量超过25%时定为II类混合土;当含量不超过25%时,按H.2.3定名。H.2.3充填物及包含物的描述,经常用“含”、“混”、“夹”字样,其含意是“含”一一系指土中含有的包含物,如含铁锰结核、碎砖块等;“混”一一系指某类土中均匀地混有另一类土;“夹”一一系指某一类土不均匀地夹有另一类土,如粘土夹碎石。H.2.4为了消除对同一土层认识上的人为差异,在描述工作正式开展前,应由工程(技术)负责人进行现场示范性描述,以统一描述标准。工程负责人应在现场随时处理各种技术问题。H.2.5岩、土的结构、构造、成因类型及地质时代等难以确定时,应将直观特征详细描述,由工程(技术)负责人根据区域资料和调查结果综合分析、研究后确定。H.2.6野外记录应使用标准的专业术语,术语标准参照《建筑岩土工程勘察基本术语标准》JGJ84—92执行,记录要准确、详细、客观。H.3岩石H.3.1岩体是指包括各种结构面(如节理裂隙等)的原位岩石。岩石按成因分为岩浆岩、沉积岩及变质岩三大类,当岩石具有特殊成分、结构特征和性质时,应定名为特殊性岩石,一般可分为易溶性岩石、膨胀性岩石、崩解性岩石和盐渍化岩石等。H.3.2岩石应描述的内容及顺序是:名称、颜色、结构及构造特征、主要矿物成分、胶结物、坚固性、风化及完整程度,产状要素及岩脉特性等,对特殊性岩石尚应描述其遇酸反应及遇水反应情况等。H.3.3描述岩石名称时,应按岩石学定名,指出岩石的具体名称,如闪长岩、花岗岩等。如遇有两种矿物组成的岩石,应以次要矿物在前,主要矿物在后定名,如云母石英片岩等。H.3.4岩石的颜色,应分别描述其新鲜面及风化面、天然状态颜色及风干后的颜色。H.3.5描述岩石成分时,可只描述主要矿物成分。H.3.6应描述岩石的胶结物与沉积岩的胶结类型及岩石的结构构造特征。H.3.7岩石风化程度的划分按《岩土工程勘察规范》(GB50021-2001)附录A附表A.0.3的规定执行。H.3.8对岩石的完整程度,应描述岩体节理裂隙的性质、张闭情况、充填及联通性等,必要时应量测裂隙的产状,并统计单位面积(或单位长度)的数量。应详细记录各种不连续软弱结构面的类型、

间距、延展性、张开度、粗糙度、充填及胶结情况、组合关系、力学属性等,必要时,应做节理裂隙玫瑰花图等。H.3.9描述岩石的产状要素,应记录岩层、断裂、节理的走向、倾向和倾角。如岩层走向N60W、倾向NE30°、倾角45°,则可表示为NE30°Z45°OH.3.10描述岩脉特征,应着重描述其名称、坚固性、风化程度和穿插、分布形状、宽度、完整性及与围岩的接触、胶结等特征。H.3.11描述岩溶特征,应着重描述岩溶发育程度、岩溶形态、规模、空间分布、溶洞顶板厚度及破碎程度、溶洞充填情况等。H.3.12对岩溶发育的覆盖型岩溶地段应采用工业CT、地质雷达、浅层地震等综合工程物探方法确定其地下发育形态。残积土是岩石风化后还没有被搬运留在原地的土状岩层,而冲洪积地层是流水或河流沉积地层,很明显残积土下部是不可能有冲洪积地层的。在有些地区第四纪岩浆或火山活动较多,有可能是岩浆岩下部有可能存在第四系地层,而这种情况下,上部的岩石一般是不会风化成残积土的。残坡积土和残积土。实际上残坡积土还是有搬运的,一般顺坡在自重力的作用下向下迁移,只不运距不远。而残积土实际上一般是指岩石的全风化层,岩石特征完全被破坏,呈土状,没经过搬运,在地质上一般还是将其划下岩体中。土力学(关于干容重、浮容重、饱和容重)土的三相指标图1-2土的三相图(1)土的天然密度或重度单位体积土的质量(重量)。(kg/m3) (1-3a)(kN/m3) (1-3b)且有关系(1-4)试验测定方法:环刀法等。(2)土的含水量(率)w土中水的质量(重量)与土粒质量(重量)之比,以百分数表示。(1-5)试验测定方法:烘干法(3)土粒相对密度(土粒比重)Gs土粒相对密度定义为土粒的质量与同体积4oC纯水的质量之比。

(无量纲)(1-6)试验测定方法:比重瓶煮沸法。由此还可得到(1-7)以下指标由基本指标导出。设土颗粒的体积为1,按照各指标的定义,可得到单元土的三相简图如图1-3所示。图1-3单元土的三相简图(4) 孔隙比e孔隙比为土中孔隙何种与土粒体积之比,用小数表示。(1-8)(5) 孔隙率n土中孔隙体积与土的总体积之比。(1-9)且有或(1-10)(6) 饱和度Sr土中所含水分的体积与孔隙体积之比,反映了土体中孔隙被水充满的程度。(1-11)(7) 土的饱和容重和浮重度(有效重度)饱和重度为土处于饱和状态时的重度,浮重度为土浸入水中受到浮力时的重度。(1-12)(1-13)(8) 干重度土中颗粒的重量与土体积之比。(1-14)(9)各重度之间的比较(1-15)(10)最大干容重和最优含水量同一种土,采用同一种方法压密击实时,所能达到的最大干容重与其含水量有关,达到最大干容重时所对应的含水量称为最优含水量,显然干容重最大时,填土的密实度最高。7.土的物理状态土的物理状态主要是指:无粘性土:密实程度,疏松或密实。粘性土:稠度,即土的软硬程度。土的干湿软硬松密等状态。(1)无粘性土密实程度指标孔隙比孔隙比愈大,则土愈松散,反之越密实。孔隙比仅适用于级配相近的土的密实度的比较,且取原状土样测定孔隙比比较困难。相对密度Dr(1-16)其中,e为原状土的孔隙比,和分别为该种土所能达到的最大、最小孔隙比。同样,它也存在着原状土孔隙比较难测定的问题。标准贯入系数N63.5通过现场标准贯入试验确定,适用范围较广。(2)粘性土的状态及可塑性即粘性土的软硬程度,或称稠度状态,如图1-4所示。其中:图1-4粘性土的物理状态液态:含水量较大,颗粒之间有自由水,且粒间联结很弱。宏观上表现为粘土处于粘滞流动状态。可塑态:颗粒之间的主要为外层间的结合水,土粒之间有一定的联结力。宏观上表现为土的形状可任意改变而不裂不断,外力解除后,土仍保持改变后的形状,这种性能称为可塑性,是粘性土区别于无粘性土的重要特征。半固态:颗粒间的水主要是强结合水和扩散层的内层结合水,粒间联结比较牢固,土失去可塑性。固态:土间之水为强结合水,粒间联结非常牢固,土体积已不随含水量的减少而减少。它有以下几个稠度界限(粘性土由一种状态变为另一状态的分界含水量):液限:由液性状态转变为塑性状态时的分界含水量。由锥式(碟式)液限仪法或液塑限联合测定法确定。塑限:由塑性状态转变为半固体状态时的分界含水量。由搓条法或液塑限联合测定法确定。缩限:由半固态转变为固态的分界含水量。(3)塑性指数(1-17)反映粘性土的可塑性的大小,综合反映出该种土的固有特性(指颗粒组成、矿物成分、结构性等),可作为粘性土分类的指标。(4)液性指数(1-18)由此可判断粘性土所处的物理状态:,半固态或固态;,可塑态;,液态5.土(岩)的工程分类以《建筑地基基础设计规范》(GB5007—2002)为例,作为建筑地基的土(岩),可分为岩石、碎石土、砂土、粉土、粘性土和人工填土等六类。其中,岩石按强度、完整程度等分类,粗粒土按其级配(及颗粒是否圆滑)分类,细粒土按塑性指数分类。(1)岩石按强度:坚硬岩、较硬岩、较软岩、软岩、极软岩。按完整程度:完整、较完整、较破碎、破碎、极破碎。(2)碎石土碎石土是指粒径大于2mm的颗粒含量超过总质量的50%的土,由大到小,包括:漂石(块石)、卵石(碎石)、圆砾(角砾)砾。(3)砂土砂土是指粒径大于2mm的颗粒含量不超过总质量的50%,粒径大于0.075mm的颗粒含量超过总质量的50%的土,由大到小,包括:砾砂、粗砂、中砂、细砂、粉砂。(4)粉土粉土是指粒径大于0.075mm的颗粒含量不超过总质量的50%且塑性指数IP<10的土。(5)粘性土粘性土是指塑性指数的土。其中:,粉质粘土;,粘土。钻孔灌注桩穿越碎石粘土层技术方法1刖言钻孔灌注桩技术,因其对各种土层的适当性强、无挤土效应、无震害、无噪音、承载力高等优点,在工程中得到了广泛应用。钻孔灌注桩对于一般粘性土、填土、淤泥质土及砂土等,穿越方便,成孔效果较好,而对于碎石粘土则不宜采用。本文就钻孔灌注桩穿越碎石粘土层的工程实例进行分析,对穿越该类土的设计施工提出一些看法,从而为同类土层中设计钻孔灌注桩时桩端土层的选取提供参考。2工程地质概况及试桩情况某公用建筑工程,三层框架结构,建筑物总高度为16.5m,跨度10m,楼面设备荷载最为12kN/m2。设计最单柱荷载为3000kN。该工程地处杭州老城区涌金门附近,系旧城改造老宅基地,山脚坡积型地层。根据工程地质勘察报告,土层分布及特征如下:①杂填土,厚3.9〜4.8m;②粉质粘土,饱和,软塑,厚0.4〜0.9m;③淤泥质粘土,饱和,流塑,厚0.3〜6.3;④粘土,可塑〜硬可塑,厚1.6〜5.1m;⑤淤泥质粉质粘土,厚0〜4.0m:⑥-】含砾粉质粘土,硬可塑,厚0〜7.5m:⑥-2含碎石粘土,可塑〜硬可塑,厚2.7〜5.4m:⑦全风化泥岩,可塑,厚4.2〜7.2m,⑧-1全风化炭质泥岩,饱和,可塑,厚1.6〜2.2m:⑧-?强风化炭质泥岩,厚于6.2m,未穿。根据建筑物荷载及土层分布情况,地质勘察报告建议,采用钻孔灌注桩设计,以⑧~2层为桩端持力层,桩端进入持力层深度不小于0.5m,平均桩长28m,单桩承载力标准值以p1000钻孔灌注柱为例取2570kN。工程施工采用10型正循环钻孔灌注桩,在钻进至17.5m深处,遇到⑥-2层土,钻机上台,无法钻入。⑥-2层土为含碎石粘土,碎石含量占5%〜20%,粒径一般2〜5cm,少量于10cm。根据有关钻孔灌注桩施工经验,正循环施工工艺对于粒径不于15cm的碎石,一般均可在泥浆中上漂排出,钻头也不至被卡死。但从冲抓清孔取出土样分析,⑥-2层土样中,碎石为坚硬的硅质岩,最粒径40cm,冲抓4斗土中能取出10cm以上的碎石12块,小于10cm的碎石也较多,碎石强度极高,钻机无法将其磨碎上漂,钻头被卡住无法钻入。地质报告描述土层正确,但对砾碎石含量及粒径的分析偏差较。为取得详细资料,采用#2钻机继续试桩,在钻至17.8m处(即⑥-2层面)时,钻杆卡死,无法钻入,经建设单位同意,停机处理。3处理方案及结果根据以上情况,地质勘察、设计及施工各方进行了认真的分析探讨,归纳起来,主要有以下几点:方案一:在钻至⑥-2层顶面时,改用人工挖孔进入一定深度,以该层为桩端持力层。桩下部扩底,以增加单桩承载力。该方案工期增加不多,但人工挖孔深度较,且部分桩的直径将由p600改为p800。该深度单桩承载力下降较。经计算,以p1000桩为例,单桩承载力仅为原设计值的48%,需修改设计,将单柱单桩改为多桩承台。且其下为软弱下卧层,厚度较,而本层局部厚度较小,小于4倍桩径,作持力层不够理想。方案二:机械钻孔与人工挖孔相结合,钻孔至⑥-2层土后,改用人工挖孔穿透此层,清孔后再打钻孔灌注桩。该方案施工组织上难度较,工期将增加一个月,费用增加30万元。方案三:以⑥-2层土作为桩端持力层,改用沉管灌注桩。该方案经设计验算,@-2层土单桩承载力较低,改用p426沉管灌注桩后,单桩承载力仅为300〜470kN,需将原单柱单桩改为承台群桩,桩的总数将增加7倍左右,平面布桩系数较,更改设计需要一定的时间,打桩工期因桩的数量增加不可缩短,投资额将增加37万元左右。同时,该工程地处老城区,四周均为民居,沉管灌注桩的噪音对周围居民影响很,势必会影响工程的顺利进行,而且对沉管灌注桩来说,局部场地上的⑥-】层含砾粉质粘土沉桩较困难。方案四:保持原设计不变,改进施工工艺。如采用进口的S500反循环钻机,其钻杆孔径,吸出块石方便,钻透该层有把握,工期较快。但费用增加很,需增加投资30万元,且目前难以组织到该机型进场。因此采用SPJ300型正循环钻机,加钻进力度,穿透此层,但工期及费用将有所增加。对所面临的难题,进行分析后认为,采用SPJ300型正循环钻孔工艺,钻透该层把握较。上述几种方案中,综合各种因素考虑,方案四比较可行。原设计桩型不变,采用SPJ300型正循环钻机替代原10型钻机,加钻杆力度,并改进钻头,采用筒体钻,增加钻头摩阻力,钻松土体,套取较石块。根据桩径,结合采用小直径钻头,用钻、磨、挤等方法钻进土层,将直径较无法漂出的石块挤入桩侧土中。钻机数量由2台改为4台同时开工。经试桩,成功钻透了该土层。钻孔进尺较慢,⑥^层土中钻进速度为50〜80cm/h,一般单桩成孔时间为2〜3天左右,但施工比较顺利。最后实际工期比原计划增加了20天左右,增加施工机械及人工费用约18万元。顺利完成了整个桩基工程施工。桩基施工完毕后,对其中部分桩进行了高应变动测,其余所有桩进行了低应变动测。结果表明,单桩承载力与设计要求值符合较好,桩身质量完好,达到了设计要求。4几点建设根据上述工程实践,在钻孔灌注桩的设计及施工中,除了一般的认识经验外,下面几个方面问题应引起重视。加强地质勘察报告的深度与准确度。对于含碎石粘性土的土层,由于勘探工艺的特点,要判明碎石含量及其粒径不可能十分准确。这会直接影响钻孔灌注桩的设计及施工工艺的采用,因此还要加强对同地区土质情况的调研,结合实际勘探情况,提交准确的报告,供设计与施工决策。设计时应充分考虑到碎石含量对承载力的影响。由于桩底沉渣问题制约着单桩承载力和桩身质量的稳定性,对碎石含量较多、粒径较的土层,正循环钻孔工艺排渣能力较差,沉渣小于5cm的设计要求较难满足,特别当孔底沉渣的粒径较,一般正循环泥浆清孔难于将其携带上来。在设计钻孔灌注桩时,必须适当考虑“施工因素”的影响。因此针对该类土层,单桩承载力设计值应适当减小。在施工上,应对相应土层的钻入难度有充分的估计,采用钻杆力度较的机型,避免机型选择不合适造成窝工、影响工期,酿成经济损失。在机械安排及整个施工组织设计中应有足够的考虑和准备,如一般正循环清孔效果达不到要求时,或长时间清孔,孔底沉渣仍超过规定要求时,应改换清孔方式(如用风压机清孔等),以确保设计要求的承载力。经验交流:沉井基础和钻孔灌注桩基础的区别沉井基础施工时在地面整体预制沉井达到强度后挖土下沉。铺垫:对沉井位置进行测量定位,平整场地并在沉井制作范围内铺30cm厚砂卵石垫层,分层洒水夯实,振压密实。采用铺承垫木方法,避免沉井砼在灌注后,而尚未达到一定强度前产生不均匀沉降使沉井结构开裂。承垫木采用250cmx20cmxl6cm的枕木,枕木对称摆放,对称枕木中心连线必须通过沉井中心,对称的枕木应编上相同的号码,枕木间隔20cm摆放。铺设垫木时应使顶面保持在同一水平面上,并用水准仪找平使高差在10mm以内,垫木摆放时要先在纵、横轴中心线上摆放两组定位枕木,然后对称摆放其他枕木,枕木缝之间用砂填平。预制沉井:按设计施作沉井钢刃脚,待钢筋绑扎好后,在垫木上立沉井内外模和支撑,井壁外侧设双排钢脚手架作施工平台。模板制做完后,严格检查其尺寸,然后浇注砼,采用起重机配合吊斗运送混凝土,砼倾倒高度超出2m时设溜槽以防离析。浇注砼时一定要分区、依次、同步、对称进行,避免砼面高低相差悬殊,压力不均匀而产生基底不均匀沉陷,砼按规范要求振捣密实,不允许发生漏强和过振。抽垫:砼达到设计强度后,方可进行抽垫。抽垫时分区、依次、对称、同步地进行,设专人统一指挥。当抽出几组空档后,即可回填,以后每抽出一组即回填一组。回填材料选用砂夹石并应分层洒水充分夯实,其回填高度的决定,应使最后分配在定位垫木上的重量不压断垫木及垫木下的承压应力不超出原地面极限承压应力。抽垫过程中应在沉井上下左右各设测点一个,观察其下沉情况。如果在抽垫过程中发生倾斜、回填的砂夹石挤出、垫木压断、下沉量急速增加等异常现象应及时处理。挖土下沉:待沉井砼强度达到设计强度的70%时,拆除模板对井壁进行详细验收,发现缺陷要认真处理,然后四面弹十字中线,从刃脚到顶画出标尺,在沉井顶部弹线路中线与法线。下沉前认真查看地质钻孔资料,了解地质分层状况,采取相应措施。在下沉前在沉井外壁涂机油,以减少下沉时与土的侧向摩阻力。下沉时严格按设计采取排水或不排水下沉,采用卷扬机配合抓泥斗出土。下沉施工时先在中部下挖40〜50cm,并逐渐向四周对称、分层、同步地扩挖。沉井在下沉过程中随时进行测量,并进行下沉系数计算,保证下沉速度和垂直度,挖土时对称进行,刃脚处不得挖土,发生倾斜达到5cm时立即停止取土下沉,进行纠偏。当第一节沉井顶距地面0.5〜1.0m时,再在其上按照设计预制第二节沉井,达到设计强度后继续下沉,其他节沉井以此类推。沉井封底:沉井下沉至设计标高并清除沉淀淤泥后,应进行沉降观察,8小时内沉降量不大于10mm时方可封底。封底采用垂直导管法灌注水下砼封底,在井孔内垂直放入多根内径为200〜300mm的钢制导管,导管数量及在平面上的布置,应使各导管有效灌注半径互相搭接,并盖满全部基底。管底距基底面30〜40cm,在导管顶部接一漏斗,在漏斗颈部安放球塞,并用绳索系牢。漏斗内盛满陷度较大的砼,用砍球法灌注砼。在灌注砼过程中,对于导管断裂、接头漏水、球塞卡堵等常见故障采取相应预防措施。井孔填充和封顶:填充前,先将井内积水抽干,并清理封底砼表面的浮浆,按设计填充片石砼或砂夹石。片石间净距不小于15cm,最上层顶面覆盖25cm以上的砼层。施工采用起重机配合吊斗运送混凝土,插入式振捣捧捣固钻孔桩基础钻机就位:根据地质情况,钻孔采用冲击钻机或旋转钻机。钻机机身要用方木或旧枕木垫平塞牢,钻架四脚拉好缆风绳,确保钻机稳定。钻机安放平稳后,检查钻头或钻杆中心与护筒中心的偏差不大于5cm,方可开钻。开钻:钻孔作业应分班连续进行,并及时填写钻孔施工记录,实行交接班制。冲击钻机开孔要用小冲程,升降钻锥必须平稳,防止碰撞护筒及孔壁。钻进:冲击钻机钻进时,起落钻头速度要均匀,不得过猛或骤然变速,以免碰撞孔壁或套管。冲击过程中,要勤松绳、少松绳,借助冲击声音,判别孔底情况。要勤抽碴,勤检查钢丝绳和钻头磨损情况及转动装置是否灵活,预防发生安全质量事故。旋转钻机钻进时,应经常注意土层变化,对不同的土层采用不同的钻速、钻压、泥浆比重和泥浆量,在砂土、软土等容易坍孔的土层宜采用抵挡慢速钻进,同时提高孔内水头,加大泥浆比重。抽碴:冲击钻机随着钻进深度的增加,孔内泥浆含碴量增大,钻进速度也随之下降,一般在坚硬地层钻速降至5cm/h,松散层钻速降至15cm/h,应进行抽碴。每钻进0.5〜1m即可抽碴,每次抽碴不宜过多,同时不断注入泥浆或清水以保证孔内水位,预防塌孔。按要求对抽出钻碴进行取样分析,校核设计地质资料。清孔:钻孔达到设计深度后,经终孔检查,即进行清孔。冲击成孔采用抽碴法清孔,掏到手摸泥浆无2—3mm大的颗粒且其比重在规定指标之内时为止。旋转钻机清孔采用换浆法,将钢筋笼及导管安放到位后,从导管中以中速压入符合规定指标的泥浆,把孔内比重大的泥浆换出,使含砂率逐步减小,直至稳定状态为止。清孔时应及时向孔内注入纯泥浆,保持孔内足够的水头压力,避免坍孔。不得用加深孔深来代替清孔。钢筋笼吊装:钢筋笼采用吊车吊装,以一次整体安设为宜,吊点设在加强箍筋处,同时采取绑扎砂杆的措施加强钢筋笼的刚度,保证起吊时不致变形。吊入钢筋笼时,应对准孔位轻放、慢放。若遇阻碍,可慢起慢落和正反旋转使之下放,防止碰撞孔壁而引起坍塌,同时,细心观察水位,检查是否坍孔。钢筋笼分段吊装时,入孔搭接采用单面搭接焊,上下节轴线控制在同一直线上。钢筋笼入孔后,要进行测量校对,然后用吊筋将其固定于孔口,牢固定位,防止下落及“浮笼”现象的发生。当灌注完毕,待桩上部混凝土初凝后,方可解除钢筋笼的固定设施。灌注水下混凝土:灌注水下混凝土采用竖向导管法。导管入孔就位后,其下端距孔底沉碴).3〜0.5m。水下混凝土的灌注采用孔口平台配汽车吊进行,一次连续灌注。灌注速度必须迅速,防止坍孔和泥浆沉淀过厚。在灌注水下混凝土前,应向孔底射水3〜5min,射水压力应比孔底压力大0.05Mpa,将孔底沉淀物冲翻动,然后立即灌注。钻孔桩封底采用砍球法进行施工。封底混凝土的初存量要满足首批混凝土入孔后,导管埋入混凝土的深度不小于1.0m的要求。灌注过程中,经常测量导管埋入混凝土深度,导管埋深控制在2〜4米之间,随灌注随提升导管。承台施工:基坑采用挖掘机开挖,人工配合。挖至设计标高后,支模板,并同时清除桩顶浮浆。挖孔桩按要求伸入到承台内,绑扎承台钢筋,经监理工程师检查,满足设计要求后灌注砼。灌注完毕后,预埋基础与墩台身的施工接茬钢筋。灰岩地区地质条件对桩基施工影响(一)摘要:灰岩地区因其地质条件复杂,如土洞、岩溶(溶洞、溶沟、溶槽)、构造带(断层、裂隙)发育,地下水丰富甚至有地下暗河通道等,严重影响桩基础的选型和施工质量及安全。尤其是型建筑物的基础,如果对岩土工程条件认识不足,在施工中多次更改桩型,就会造成严重的质量安全隐患和经济损失。本文通过对深圳灰岩地区多个深基础施工成败经验的分析,提出一些经验性意见。关键词:桩基础施工管理复杂地质1岩土工程地质状况1地层分布灰岩地区地层致分布有:3。人工填土层(Qml);b。冲洪积层:分布有粉质粘土、粉土、砂、砾等。呈软塑至可塑状态,孔隙潜水量,渗透性能好;c.残积层(Q。’),由灰岩风化残积而成、一般为湿一饱和,流塑至可塑状态,与基岩的接触带部分由于潜水影响呈流塑状态;d,岩层:为灰岩(理岩)、断层、裂隙、岩溶发育,基岩面溶沟溶槽等溶蚀现象严重。2岩溶发育特征灰岩地区的岩溶发育具有一定的规律,普遍表现为:(1) 自上而下,由强变弱;基岩面上分布着溶沟、溶槽,浅部基岩岩溶发育较强,有的甚至呈串珠状自上而下分布,深部为古老溶洞,分布较少、暗河为古老溶洞连通而成。(2) 浅部溶洞充填物多,深部充填物少:充填物呈全充填一半充填一无充填,一般呈流塑一软塑状态:(3) 构造裂隙发育,地下水活动频繁地方溶洞较发育。3地下水特征灰岩地区地一F—水按其贼存介质可分为三种类型,即a。赋存于冲洪积及残积层的孔隙水,渗透性强3b。赋存于下伏溶洞、溶蚀裂隙及暗河中的岩溶裂隙水,连通性好,水量丰富;c。赋存于构造断裂带中的裂隙水,连通性强。2对基础的影响及应采取的措施1对持力层的影响及措施由于灰岩地区冲洪积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论