版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IX.COMPRESSIBLEFLOW符松清华大学航天航空学院2023/4/61清华大学工程力学系Compressibleflowisthestudyoffluidsflowingatspeedscomparabletothelocalspeedofsound.Thisoccurswhenfluidspeedsareabout30%ormoreofthelocalacousticvelocity.Then,thefluiddensitynolongerremainsconstantthroughouttheflowfield.Thistypicallydoesnotoccurwithfluidsbutcaneasilyoccurinflowinggases.Twoimportantanddistinctiveeffectsthatoccurincompressibleflowsarechokingwheretheflowislimitedbythesonicconditionthatoccurswhentheflowvelocitybecomesequaltothelocalacousticvelocityandshockwavesthatintroducediscontinuitiesinthefluidpropertiesandarehighlyirreversible.2023/4/62清华大学工程力学系Sincethedensityofthefluidisnolongerconstantincompressibleflows,therearenowfourdependentvariablestobedeterminedthroughouttheflowfield.Thesearepressure,temperature,density,andflowvelocity.Twonewvariables,temperatureanddensity,havebeenintroducedandtwoadditionalequationsarerequiredforacompletesolution.Thesearetheenergyequationandthefluidequationofstate.Thesemustbesolvedsimultaneouslywiththecontinuityandmomentum
equationstodeterminealltheflowfieldvariables.2023/4/63清华大学工程力学系EquationsofStateandIdealGasPropertiesTwoequationsofstateareusedtoanalyzecompressibleflows:theidealgasequationofstateandtheisentropicflowequationofstate.Thefirstofthesedescribegasesatlowpressure(relativetothegascriticalpressure)andhightemperature(relativetothegascriticaltemperature).Thesecondappliestoidealgasesexperiencingisentropic(adiabaticandfrictionless)flow.2023/4/64清华大学工程力学系TheidealgasequationofstateisInthisequation,Risthegasconstant,andPandTaretheabsolutepressureandabsolutetemperaturerespectively.AiristhemostcommonlyincurredcompressibleflowgasanditsgasconstantisRair=1716ft2/(s2∙oR)=287m2/(s2∙K).2023/4/65清华大学工程力学系Twoadditionalusefulidealgaspropertiesaretheconstantvolumeandconstantpressurespecificheatsdefinedaswhereuisthespecificinternalenergyandhisthespecificenthalpy.Thesetwopropertiesaretreatedasconstantswhenanalyzingelementalcompressibleflows.Commonlyusedvaluesofthespecificheatsofairare:Cv=4293ft2/(s2∙oR)=718m2/(s2∙K)andCp=6009ft2/(s2∙oR)=1005m2/(s2-K).AdditionalspecificheatrelationshipsareThespecificheatratio
kforairis1.4.2023/4/66清华大学工程力学系Whenundergoinganisentropicprocess(constantentropyprocess),idealgasesobeytheisentropicprocessequationofstate:CombiningthisequationofstatewiththeidealgasequationofstateandapplyingtheresulttotwodifferentlocationsinacompressibleflowfieldyieldsNote:Theaboveequationsmaybeappliedtoanyidealgasasitundergoesanisentropicprocess.
2023/4/67清华大学工程力学系AcousticVelocityandMachNumberTheacousticvelocity(speedofsound)isthespeedatwhichaninfinitesimallysmallpressurewave(soundwave)propagatesthroughafluid.Ingeneral,theacousticvelocityisgivenbyTheprocessexperiencedbythefluidasasoundwavepassesthroughitisanisentropicprocess.Thespeedofsoundinanidealgasisthengivenby2023/4/68清华大学工程力学系TheMachnumberistheratioofthefluidvelocityandspeedofsound,Thisnumberisthesinglemostimportantparameterinnderstandingandanalyzingcompressibleflows.2023/4/69清华大学工程力学系MachNumberExample:Anaircraftfliesataspeedof400m/s.Whatisthisaircraft’sMachnumberwhenflyingatstandardsea-levelconditions(T=289K)andatstandard15,200m(T=217K)atmosphereconditions?Atstandardsea-levelconditions,
andat15,200m,.Theaircraft’sMachnumbersarethenNote: Althoughtheaircraftspeeddidnotchange,theMachnumberdidchangebecauseofthechangeinthelocalspeedofsound.2023/4/610清华大学工程力学系IdealGasSteadyIsentropicFlowWhentheflowofanidealgasissuchthatthereisnoheattransfer(i.e.,adiabatic)orirreversibleeffects(e.g.,friction,etc.),theflowisisentropic.Thesteady-flowenergyequationappliedbetweentwopointsintheflowfieldbecomeswhereh0,calledthestagnationenthalpy,remainsconstantthroughouttheflowfield.Observethatthestagnationenthalpyistheenthalpyatanypointinanisentropicflowfieldwherethefluidvelocityiszeroorverynearlyso.2023/4/611清华大学工程力学系Theenthalpyofanidealgasisgivenbyh=CpToverreasonablerangesoftemperature.Whenthisissubstitutedintotheadiabatic,steady-flowenergyequation,weseethatho=CpTo=constantandThus,thestagnationtemperatureToremainsconstantthroughoutanisentropicoradiabaticflowfieldandtherelationshipofthelocaltemperaturetothefieldstagnationtemperatureonlydependsuponthelocalMachnumber.2023/4/612清华大学工程力学系Incorporationoftheacousticvelocityequationandtheidealgasequationsofstateintotheenergyequationyieldsthefollowingusefulresultsforsteadyisentropicflowofidealgases.2023/4/613清华大学工程力学系ThevaluesoftheidealgaspropertieswhentheMachnumberis1(i.e.,sonicflow)areknownasthecriticalorsonicpropertiesandaregivenby2023/4/614清华大学工程力学系Boththecritical(sonic,Ma=1)andstagnationvaluesofpropertiesareusefulincompressibleflowanalyses.Forair(k=1.4),theseratiosbecome2023/4/615清华大学工程力学系Inallisentropicflows,allcritical(Ma=1)propertiesareconstant.Inadiabatic,butnon-isentropicflows(e.g.adiabaticflowswithfriction),a*andT*areconstant,butP*andr*mayvary.AtsonicconditionsThesevalueswillbeveryusefulinproblemsinvolvingcompressibleflowwithfrictionorheattransferconsideredlaterinthechapter.2023/4/616清华大学工程力学系IsentropicFlowExample:Airflowingthroughanadiabatic,frictionlessductissuppliedfromalargesupplytankinwhichP=500kPaandT=400K.WhataretheMachnumberMa.thetemperatureT,densityr,andfluidVatalocationinthisductwherethepressureis430kPa?2023/4/617清华大学工程力学系Thepressureandtemperatureinthesupplytankarethestagnationpressureandtemperaturesincethevelocityinthistankispracticallyzero.Then,theMachnumberatthislocationis2023/4/618清华大学工程力学系andthetemperatureisgivenbyTheidealgasequationofstateisusedtodeterminethedensity,2023/4/619清华大学工程力学系UsingthedefinitionoftheMachnumberandtheacousticvelocity,weobtain2023/4/620清华大学工程力学系SolvingCompressibleFlowProblemsCompressibleflowproblemscomeinavarietyofforms,butthemajorityofthemcanbesolvedasfollows:Usetheappropriateequationsandreferencestates(i.e.,stagnationandsonicstates)todeterminetheMachnumberatallflowfieldlocationsinvolvedintheproblem.Determinewhichconditionsarethesamethroughouttheflowfield(e.g.thestagnationpropertiesarethesamethroughoutanisentropicflowfield).Applytheappropriateequationsandconstantconditionstodeterminethenecessaryremainingpropertiesintheflowfield.Applyadditionalrelations(i.e.equationofstate,acousticvelocity,etc.)tocompletethesolutionoftheproblem.MostcompressibleflowequationsareexpressedintermsoftheMachnumber.Youcansolvetheseequationsexplicitlybyrearrangingtheequation,byusingtables,orbyprogrammingthemwithspreadsheetorEESsoftware.2023/4/621清华大学工程力学系IsentropicFlowwithAreaChangesAllflowsmustsatisfythecontinuityandmomentumrelationsaswellastheenergyandstateequations.Applicationofthecontinuityandmomentumequationstoadifferentialflow(seetextbookforderivation)yields:ThisresultrevealsthatwhenMa<1(subsonicflow),Ma-1<0andvelocitychangesaretheoppositeofareachanges.Thatis,increasesinthefluidvelocityrequirethattheareadecreaseinthedirectionoftheflow.Forsupersonicflow(Ma>1),Ma-1>0andtheareamustincreaseinthedirectionoftheflowtocauseanincreaseinthevelocity.ChangesinthefluidvelocitydVcanonlybefiniteinsonicflows(Ma=1)whendA=0.Theeffectofthegeometryuponvelocity,Machnumber,andpressureisillustratedinFigure1nextpage.2023/4/622清华大学工程力学系Figure12023/4/623清华大学工程力学系2023/4/624清华大学工程力学系Ifthesonicconditiondoesoccurintheduct,itwilloccurattheductminimumormaximumarea.Ifthesonicconditionoccurs,theflowissaidtobechokedsincethemassflowrateandisthemaximummassflowratetheductcanaccommodatewithoutamodificationoftheductgeometry.Themaximumflowrateisalsogivenbyandforair
andforair
2023/4/625清华大学工程力学系2023/4/626清华大学工程力学系2023/4/627清华大学工程力学系ThelocalstagnationpressureisThecritical,sonic-throatareaisdeterminedfrom2023/4/628清华大学工程力学系Notethatthisistheminimumthroatareathatmustactuallyoccurintheductinorderfortheflowtobecomesupersonic.ThemassflowisgivenbyForparts(e)and(f),weknowA2/A*asgivenbelowandmustthereforesolveEqn.9.45forthevaluesofMa2thatwillyield(e)thesubsonicsolutionor(f)thesupersonicsolution.Use9.28atoobtainthepressure.and2023/4/629清华大学工程力学系ThisiseasilyaccomplishedwiththeEESorsomeothercomputerbasediterativesoftwaretoyieldthefollowing:(e)subsonicsolution-Ma2=0.6758P2=415kPaor(f)supersonicsolution-Ma2=1.4001P2=177kPaNotethatforthesupersonicsolution,thepressurehasdecreasedtoalowervalueandsonicconditionsmusthaveoccurredatthethroatbetween1and2.2023/4/630清华大学工程力学系NormalShockWavesUndertheappropriateconditions,verythin,highlyirreversiblediscontinuitiescanoccurinotherwiseisentropiccompressibleflows.Thesediscontinuitiesareknownasshockwaveswhichwhentheyareperpendiculartotheflowvelocityvectorarecallednormalshockwaves.Anormalshockwaveinaone-dimensionalflowchannelisillustratedinFigure2.Figure22023/4/631清华大学工程力学系Applicationofthesecondlawofthermodynamicstothethin,adiabaticnormalshockwaverevealsthatnormalshockwavescanonlycauseasharpriseinthegaspressureandmustbesupersonicupstreamandsubsonicdownstreamofthenormalshock.RarefactionwavesthatresultinadecreaseinpressureandincreaseinMachnumberareimpossibleaccordingtothesecondlaw.Applicationoftheconservationofmass,momentum,andenergyequationsalongwiththeidealgasequationofstatetoathin,adiabaticcontrolvolumesurroundinganormalshockwaveyieldstheresultsshowninthefollowingtable.2023/4/632清华大学工程力学系Itisnotedthatinmanycompressibleflowproblemswithnormalshocks,thelocationoftheshockisunknown.Fromtheequationsshownnextpage,thisismostreadilyspecifiedbyfindingthemachnoupstreamoftheshock,Ma1.However,formostproblemsthisrequiresaniterativesolutionofoneofthefollowingequations,dependingonthegiveninformation.2023/4/633清华大学工程力学系NormalShockRelations2023/4/634清华大学工程力学系Whenusingtheseequationstorelateconditionsupstreamanddownstreamofanormalshockwave,keepthefollowingpointsinmind:UpstreamMachnumbersarealwayssupersonicwhiledownstreamMachnumbersaresubsonic.Stagnationpressuresanddensitiesdecreaseasonemovesdownstreamacrossanormalshockwavewhilethestagnationtemperatureremainsconstant(aconsequenceoftheadiabaticflowcondition).Pressuresincreasegreatlywhiletemperatureanddensityincreasemoderatelyacrossashockwaveinthedownstreamdirection.Thecritical/sonicthroatareachangesacrossanormalshockwaveinthedownstreamdirectionand.Shockwavesareveryirreversiblecausingthespecificentropydownstreamoftheshockwavetobegreaterthanthespecificentropyupstreamoftheshockwave.2023/4/635清华大学工程力学系Movingnormalshockwavessuchasthosecausedbyexplosions,spacecraftreenteringtheatmosphere,andotherscanbeanalyzedasstationarynormalshockwavesbyusingaframeofreferencethatmovesatthespeedoftheshockwaveinthedirectionoftheshockwave.2023/4/636清华大学工程力学系Example:NormalShockinaConverging-DivergingNozzle2023/4/637清华大学工程力学系2023/4/638清华大学工程力学系2023/4/639清华大学工程力学系ReviewofVelocity-PotentialConceptsThischapterpresentsexamplesofproblemsandtheirsolutionsforwhichthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医理疗改善慢性肠炎症状分析
- 标准预防相关知识课件
- 医疗设备智能远程控制
- 医疗质量提升与内部管理策略
- 企业薪酬管理制度
- 2026年智能门窗轨道系统项目营销方案
- 2026年智能更衣柜项目营销方案
- 标准件知识课件
- 课件的基本概念
- 柴油机维修培训课件
- 医疗器械设计和开发的培训
- 沪教版八年级化学(上册)期末阶段检测及答案
- DL-T797-2012风力发电场检修规程
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 导尿技术常见并发症及处理
- 23秋国家开放大学《汉语基础》期末大作业(课程论文)参考答案
- 电弧炉炼钢工安全操作规程
- 人教版小学数学六年级年级下册课本习题集(带有课本插图)
- 七年级数学上册 期中考试卷(沪科安徽版)
- 人工智能在体育训练与竞技分析中的应用
- 检查井工程量计算模板(原)
评论
0/150
提交评论