菱形性质练习题_第1页
菱形性质练习题_第2页
菱形性质练习题_第3页
菱形性质练习题_第4页
菱形性质练习题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

菱形性质练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是() A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)2.菱形的周长为4,一个内角为60°,则较短的对角线长为() A.2 B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为() A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为() A.15 B. C.7.5 D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=度.三.解答题11.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.12.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.13.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.14.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?

答案一.1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是() A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。专题:数形结合。分析:此题可过P作PE⊥OM,根据勾股定理求出OP的长度,则M、N两点坐标便不难求出.解答:解:过P作PE⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∴OP==5,∴点M的坐标为(5,0),∵5+3=8,∴点N的坐标为(8,4).故选A.点评:此题考查了菱形的性质,根据菱形的性质和点P的坐标,作出辅助线是解决本题的突破口.2.菱形的周长为4,一个内角为60°,则较短的对角线长为() A.2 B. C.1 D.考点:菱形的性质;等边三角形的判定。分析:根据菱形的性质,求出菱形的边长,由菱形的两边和较短的对角线组成的三角形是等边三角形,进而求出较短的对角线长.解答:解:如图,∵四边形ABCD为菱形,且周长为4,∴AB=BC=CD=DA=1,又∵∠B=60°,∴△ABC是等边三角形,所以AC=AB=BC=1.故选C.点评:本题既考查了菱形的性质,又考查了等边三角形的判定,是菱形性质应用中一道比较典型的题目.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为() A.3:1 B.4:1 C.5:1 D.6:1考点:菱形的性质;含30度角的直角三角形。分析:根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.解答:解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.点评:此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.4.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为() A.15 B. C.7.5 D.考点:菱形的性质。分析:先求出∠A等于60°,连接BD得到△ABD是等边三角形,所以BD等于菱形边长.解答:解:连接BD,∵∠ADC=120°,∴∠A=180°﹣120°=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AB=15.故选A.点评:本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.二.填空题5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.考点:菱形的性质。分析:由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.解答:解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.点评:此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.考点:菱形的性质;点到直线的距离;勾股定理。分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解答:解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2cm2.考点:菱形的性质;勾股定理。分析:因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出BD的长,菱形的面积=底边×高,从而可求出解.解答:解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.点评:本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为60.考点:菱形的性质;勾股定理。专题:数形结合。分析:因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=13,AC⊥BD,OB=OD,OA=OC=5,∴OB==12,BD=2OB=24,∵AD∥CE,AC∥DE,∴四边形ACED是平行四边形,∴CE=AD=BC=13,DE=AC=10,∴△BDE的周长是:BD+BC+CE+DE=24+10+26=60.故答案为:60.点评:本题主要利考查用菱形的对角线互相垂直平分及勾股定理来解决,关键是根据菱形的性质得出AC⊥BD,从而利用勾股定理求出BD的长度,难度一般.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=65度.考点:菱形的性质。专题:计算题。分析:因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.解答:解:∵ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.∵∠BAD=80°,∴∠ABD=×(180°﹣80°)=50°.又∵BE=BO,∴∠BEO=∠BOE=×(180°﹣50°)=65°.故答案为:65.点评:此题考查了菱形的性质和等腰三角形的性质以及三角形内角和定理.属基础题.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=120度.考点:菱形的性质。专题:应用题。分析:由题意可得AB与菱形的两邻边组成等边三角形,从而不难求得∠1的度数.解答:解:由题意可得AB与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.点评:此题主要考查菱形的性质和等边三角形的判定.三.解答题11.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.考点:菱形的性质。专题:证明题。分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由直角三角形斜边上的中线等于斜边的一半,即可证得DE=BE.解答:证明:法一:如右图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=BE.法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE中点,∴DE=BC=BE.点评:此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.12.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.考点:菱形的性质。分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解答:解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(4分)(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2(6分),又∵OE⊥AB,及∠ABD=60°,∴∠BOE=30°,∴BE=1.(8分)点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.13.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.考点:菱形的性质;全等三角形的判定与性质。分析:(1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.解答:(1)证明:∵四边形ABCD是菱形,∴AB=CB,∠A=∠C,∵BE⊥AD、BF⊥CD,∴∠AEB=∠CFB=90°,在△ABE和△CBF中,∴△ABE≌△CBF(AAS),∴BE=BF.(2)解:如图,∵对角线AC=8,BD=6,∴对角线的一半分别为4、3,∴菱形的边长为=5,菱形的面积=5BE=×8×6,解得BE=.点评:本题主要考查菱形的性质和三角形全等的证明,同时还考查了菱形面积的两种求法.14.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质。专题:证明题;动点型。分析:(1)可先证△BCE≌△DCE得到∠EBC=∠EDC,再根据AB∥DC即可得到结论.(2)当P点运动到AB边的中点时,S△ADP=S菱形ABCD,证明S△ADP=×AB•DP=S菱形ABCD即可.解答:(1)证明:∵四边形ABCD是菱形∴BC=CD,AC平分∠BCD(2分)∵CE=CE∴△BCE≌△DCE(4分)∴∠EBC=∠EDC又∵AB∥DC∴∠APD=∠CDP(5分)∴∠EBC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论