




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题39几何最值之阿氏圆问题专题39几何最值之阿氏圆问题方法技巧方法技巧问题分析:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。模型展示:如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆.(1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则.证明:,,即(2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则.证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则,即.接下来开始证明步骤:如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,,故M点为定点,即∠APB的角平分线交AB于定点;作∠APB外角平分线交直线AB于N点,根据外角平分线定理,,故N点为定点,即∠APB外角平分线交直线AB于定点;又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.模型最值技巧:计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得的值最小,解决步骤具体如下:①如图,将系数不为1的线段两端点与圆心相连即OP,OB②计算出这两条线段的长度比③在OB上取一点C,使得,即构造△POM∽△BOP,则,题型精讲④则,当A、P、C三点共线时可得最小值题型精讲【例1】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则的最大值为_______.【例2】如图,菱形的边长为2,锐角大小为,与相切于点E,在上任取一点P,则的最小值为___________.【例3】如图,在中,∠C=90°,CA=3,CB=4.的半径为2,点P是上一动点,则的最小值______________的最小值_______提分作业提分作业1.如图,矩形中,,以B为圆心,以为半径画圆交边于点E,点P是弧上的一个动点,连结,则的最小值为()A. B. C. D.2.如图,已知菱形的边长为4,,的半径为2,P为上一动点,则的最小值_______.的最小值_______3.如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.4.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.5.如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.6.如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;7.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年4月广东深圳市光明区教育局招聘公办幼儿园人员模拟试卷及一套答案详解
- 2025年玉林市市级机关公开遴选考试真题
- 风电机组电气装调工资源合理利用考核试卷及答案
- 电焊工安全意识考核试卷及答案
- 印刷设备维修工综合能力考核试卷及答案
- 继电器制造工岗位工艺作业技术规程
- 公司催化剂生产工应急处置技术规程
- 2025福建厦门市集美第二小学产假顶岗教师招聘1人模拟试卷及答案详解参考
- 轧制加热工工艺纪律符合性考核试卷及答案
- 锅炉管阀检修工基本职业素养考核试卷及答案
- 苏州介绍课件
- 强制性脊柱炎健康宣教
- DB34∕T 2395-2015 涉路工程安全评价规范
- 人工智能技术应用专业调研报告
- HGT 6331-2024《肥料级磷酸脲》
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 中职英语 基础模块2 Unit 8 Green Earth
- 北京小学生诗词大赛备考试题库500题(供参考)
- 氢能与燃料电池-课件-第四章-氢的性质
- 能源的需求与供给
- 船舶贸易知到章节答案智慧树2023年上海海事大学
评论
0/150
提交评论