人教版初中数学教案7篇_第1页
人教版初中数学教案7篇_第2页
人教版初中数学教案7篇_第3页
人教版初中数学教案7篇_第4页
人教版初中数学教案7篇_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版初中数学教案7篇教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页

教学目标

(1)根底学问与技能目标:会用代入消元法解简洁的二元一次方程组。

(2)过程与方法目标:经受探究代入消元法解二元一次方程的过程,理解代入消元法的根本思想所表达的化归思想方法。

(3)情感、态度与价值观目标:通过供应适当的情境资料,吸引学生的留意力,激发学生的学习兴趣;在合作争论中学会沟通与合作,培育良好的数学思想,逐步渗透类比、化归的意识。

教学重、难点关键

教学重点:用代入消元法解二元一次方程组

教学难点:探究如何用代入消元法解二元一次方程组,感受“消元”思想。

教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,根底学问薄弱,特殊是对一元一次方程内容把握的不够透彻,再加上厌学现象严峻,团结协作的力量差,本节课设计了他们感兴趣的篮球竞赛和常用的消毒液作为题材来讨论二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。

教学内容分析:本节主要内容是在上节已熟悉二元一次方程(组)和二元一次方程(组)的解等概念的根底上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的根本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学学问的一个回忆和提高,同时,也为后面的利用方程组来解决实际问题打下了根底。通过实际问题中二元一次方程组的应用,进一步增加学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要把握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的挨次安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中稳固前面的学问,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。

教具预备教师预备:ppt多媒体课件投影仪

教学方法本节课采纳“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。

教学过程

(一)创设情境,导入新课篮球联赛中,每场竞赛都要分出胜败,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场竞赛中得到40分,那么这个队胜败场数分别是多少?

(二)合作沟通,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y

x+y=22

2x+y=40

②设胜的场数是x,则负的场数为22-x

2x+(22-x)=40

2、自主探究,小组争论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

其次步,用代入法解方程组把以下方程写成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0学生活动:尝试自主完成,教师订正思索:能否用含y的式子来表示x呢?

例1用代入法解方程组x-y=3①3x-8y=14②

思路点拨:先观看这个方程组中哪一项系数较小,发觉①中x的系数为1,这样可以确定消x较简洁,首先用含y的代数式表示x,而后再代入②消元。

解:由①变形得X=y+3③

把③代入②,得3(y+3)-8y=14

解这个方程,得y=-1

把y=-1代入③,得X=2

所以这个方程组的解是X=2y=-1

如何检验得到的结果是否正确?学生活动:口答检验。

第三步,在实际生活中应用代入法解方程组

例2依据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应当分装大、小瓶装两种产品各多少瓶?思路点拨:此题是实际应用问题,可采纳二元一次方程组为工具求解,这就需要构建模型,查找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应当分装x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=20230y=50000

第四步,小组争论,得出步骤学生活动:依据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组争论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:①选取一个系数较简洁的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要留意不能代入原方程,只能代入另一个没有变形的方程中,以到达消元的目的。);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最终检验求得的结果是否正确(代入原方程组中进展检验,方程是否满意左边=右边)。

(三)分组竞赛,稳固新知为了激发学生的兴趣,稳固所学的学问,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集学问性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组竞赛的形式呈现出来,这样既提高了学生的积极性,培育了团队精神,也使各类学生的力量都得到不同的进展。

(四)归纳总结,学问回忆1、通过这节课的学习活动,你有什么收获?2、你认为在运用代入法解二元一次方程组时,应留意什么问题?

(五)布置作业1、作业:P103页第1、2、4题2、思索:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法表达了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟识的问题化归为比拟熟识的问题,用于解决新问题。基于这点熟悉,本课根据“身边的数学问题引入—寻求一元一次方程的解法—探究二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进展设计。在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。教师创设好玩的情境,引发学生自觉参加学习活动的积极性,使学问发觉过程融于好玩的活动中。重视学问的发生过程。将设未知数列一元一次方程的求解过程与二元一次方程组相比拟,从而得到二元一次方程组的代入(消元)解法,这种比拟,可使学生在复习旧学问的同时,使新学问得以把握,这对于学生体会新学问的产生和形成过程是非常重要的。

人教版初中数学教师教案篇二

一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

(1)组成不等式组的不等式必需是一元一次不等式;

(2)从数量上看,不等式的个数必需是两个或两个以上;

(3)每个不等式在不等式组中的位置并不固定,它们是并列的。

二。一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共局部就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

(1)先分别求出不等式组中各个不等式的解集;

(2)利用数轴或口诀求出这些解集的公共局部,也就是得到了不等式组的解集。

三。不等式(组)的解集的数轴表示:

一元一次不等式组学问点

1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共局部即为不等式的解集。公共局部也就各不等式解集在数轴上的重合局部;

3、。我们依据一元一次不等式组,化简成最简不等式组后进展分类,通常就能把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种根本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

四。求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

【一元一次不等式组考点分析】

(1)考察不等式组的概念;

(2)考察一元一次不等式组的解集,以及在数轴上的表示;

(3)考察不等式组的特解问题;

(4)确定字母的取值。

【一元一次不等式组学问点误区】

(1)思维误区,不等式与等式混淆;

(2)不能正确地确定出不等式组解集的公共局部;

(3)在数轴上表示不等式组解集时,混淆界点的表示方法;

(4)考虑不周,漏掉隐含条件;

(5)当有多个限制条件时,对不等式关系的开掘不全面,导致未知数范围扩大;

(6)对含字母的不等式,没有对字母取值进展分类争论。

平行线的判定教案篇三

一、教学目标

1、了解推理、证明的格式,理解判定定理的证法。

2、把握平行线的其次个判定定理,会用判定公理及定理进展简洁的推理论证。

3、通过其次个判定定理的推导,培育学生分析问题、进展推理的力量。

4、使学生了解学问来源于实践,又效劳于实践,只有学好文化学问,才有解决实际问题的本事,从而对学生进展学习目的的教育。

二、学法引导

1、教师教法:启发式引导发觉法。

2、学生学法:积极参加、主动发觉、进展思维。

三、重点•难点及解决方法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进展推理。

(三)解决方法

1、通过教师正确引导,学生积极思维,发觉定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时

五、教具学具预备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1、通过设计练习,复习根底,制造情境,引入新课。

2、通过教师指导,学生探究新知,练习稳固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

把握平行线的其次个定理的推理,并能运用其进展简洁的证明,培育学生的规律思维力量。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发觉新知,以变式训练稳固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,依据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思索分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的连续,是在前一节课的根底上进展学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即假如同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要讨论的问题。

人教版初中数学教案篇四

理解一元二次方程求根公式的推导过程,了解公式法的概念,会娴熟应用公式法解一元二次方程。

复习详细数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。

重点

求根公式的推导和公式法的应用。

难点

一元二次方程求根公式的推导。

一、复习引入

1、前面我们学习过解一元二次方程的“直接开平方法”,比方,方程

(1)x2=4(2)(x-2)2=7

提问1这种解法的(理论)依据是什么?

提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特别二次方程有效,不能实施于一般形式的二次方程。)

2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)

(学生活动)用配方法解方程2x2+3=7x

(教师点评)略

总结用配方法解一元二次方程的步骤(学生总结,教师点评)。

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,假如q≥0,方程的根是x=-p±q;假如q0,方程无实根。

二、探究新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

假如这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程肯定有解吗?什么状况下有解?)

分析:由于前面详细数字已做得许多,我们现在不妨把a,b,c也当成一个详细数字,依据上面的解题步骤就可以始终推下去。

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a20,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。

(2)这个式子叫做一元二次方程的求根公式。

(3)利用求根公式解一元二次方程的方法叫公式法。

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根。

例1用公式法解以下方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。

补:(5)(x-2)(3x-5)=0

三、稳固练习

教材第12页练习1.(1)(3)(5)或(2)(4)(6)。

四、课堂小结

本节课应把握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,留意移项要变号,尽量让a0;2)找出系数a,b,c,留意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。

(4)初步了解一元二次方程根的状况。

五、作业布置

教材第17页习题4

人教版初中数学教案篇五

公式法

理解一元二次方程求根公式的推导过程,了解公式法的概念,会娴熟应用公式法解一元二次方程。

复习详细数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。

重点

求根公式的推导和公式法的应用。

难点

一元二次方程求根公式的推导。

一、复习引入

1、前面我们学习过解一元二次方程的“直接开平方法”,比方,方程

(1)x2=4(2)(x-2)2=7

提问1这种解法的(理论)依据是什么?

提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特别二次方程有效,不能实施于一般形式的二次方程。)

2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)

(学生活动)用配方法解方程2x2+3=7x

(教师点评)略

总结用配方法解一元二次方程的步骤(学生总结,教师点评)。

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,假如q≥0,方程的根是x=-p±q;假如q0,方程无实根。

二、探究新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

假如这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程肯定有解吗?什么状况下有解?)

分析:由于前面详细数字已做得许多,我们现在不妨把a,b,c也当成一个详细数字,依据上面的解题步骤就可以始终推下去。

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a20,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。

(2)这个式子叫做一元二次方程的求根公式。

(3)利用求根公式解一元二次方程的方法叫公式法。

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根。

例1用公式法解以下方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。

补:(5)(x-2)(3x-5)=0

三、稳固练习

教材第12页练习1.(1)(3)(5)或(2)(4)(6)。

四、课堂小结

本节课应把握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,留意移项要变号,尽量让a0;2)找出系数a,b,c,留意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。

(4)初步了解一元二次方程根的状况。

五、作业布置

教材第17页习题4

因式分解法

把握用因式分解法解一元二次方程。

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简洁的方法——因式分解法解一元二次方程,并应用因式分解法解决一些详细问题。

重点

用因式分解法解一元二次方程。

难点

让学生通过比拟解一元二次方程的多种方法感悟用因式分解法使解题更简便。

一、复习引入

(学生活动)解以下方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

教师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。

二、探究新知

(学生活动)请同学们口答下面各题。

(教师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,教师解答)上面两个方程中都没有常数项;左边都可以因式分解。

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

由于两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发觉,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思索:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积。)

练习:下面一元二次方程解法中,正确的选项是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、稳固练习

教材第14页练习1,2.

四、课堂小结

本节课要把握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

人教版初中数学教案篇六

问题描述:

初中数学教学案例

初中的,任凭那个年级。20__字。案例和反思

1个答复分类:数学20__-11-30

问题解答:

我来补答

2.3平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准试验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的连续,是后面讨论平移等内容的根底,是“空间与图形”的重要组成局部。

二、教学目标:

学问与技能:把握平行线的性质,能应用性质解决相关问题。

数学思索:在平行线的性质的探究过程中,让学生经受观看、比拟、联想、分析、归纳、猜测、概括的全过程。

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模力量、创新意识和创新精神。

情感态度与价值观:在探究活动中,让学生获得亲自参加讨论的情感体验,从而增加学生学习数学的热忱和勇于探究、锲而不舍的精神。

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发觉法”与“动像探究法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们常常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思索答复。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先确定学生的答复,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质。

(二)数形结合,探究性质

1.画图探究,归纳猜测

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

其次组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜测

结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜测结论是否仍旧成立?

学生:探究、争论,最终得出结论:仍旧成立。

2.教师用《几何画板》课件验证猜测

3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思索,培育创新

问题三:请推断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组争论——成果展现。

教师活动:引导学生说理。

由于a‖b由于a‖b

所以∠1=∠2所以∠1=∠2

又∠1=∠3又∠1+∠4=180°

所以∠2=∠3所以∠2+∠4=180°

语言表达:

性质2两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)

性质3两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1=110°,则∠2=°.理由:.

②若∠1=110°,则∠3=°.理由:.

③若∠1=110°,则∠4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论