




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/4/131二项分布和泊松分布的关系:回顾:随机变量、离散随机变量及其分布律、离散分布分布函数:F(x)=P(X≤x)引例:一射击运动员进行射击,设靶是中心在原点,半径为r的圆盘。又设射击不会脱靶。以X记弹着点到靶心的距离,X的取值充满一个区间(非离散变量)。先取1cm作为度量距离的单位,X取整数值,将X离散化,从而得到X的分布律,作出对应的概率直方图如图1所。接着取0.5cm作为度量距离的单位,又得到其概率直方图如图2.这样继续缩小度量距离的单位,作出一系列的概率直方图,这些直方图的顶部的台阶型曲线趋于一条光滑曲线C:y=f(x),如图3。图1图2图3在曲线C之下,ox轴上方的面积等于1,在[a,b]上的面积是X落在[a,b]的概率。2023/4/133第三节连续型随机变量及其概率密度定义.若X是随机变量,如果存在定义在整个实数轴上的非负可积函数f(x),满足条件函数f(x)称为X概率密度函数一、连续随机变量和概率密度则称X为连续随机变量;(probabilitydensityfunction),简称概率密度.2023/4/134密度函数在区间上的积分=
随机变量在区间上取值的概率2023/4/1351.连续随机变量X,20概率密度f(x)的性质102.若X是连续随机变量,则对任意x1,x2(x1<x2)有注:
假若一个函数满足上述两条性质,它一定是某一个随机变量的概率密度函数,反之也是成立的。2023/4/136求:解:(1)由得例1.设连续随机变量X的概率密度:2023/4/1371求:(1)系数A;解:(1)由有(2)随机变量X的概率分布的中值x*,
即x*满足xf(x)oA例2.
设连续随机变量X的概率密度为2023/4/138解:(2)因为且有即1求(2)中值x*:xf(x)o例2.
设连续随机变量X的概率密度为2023/4/139二、连续型随机变量的分布函数设连续X的概率密度f(x),则其分布函数为且在f(x)的连续点x处,积分关系导数关系2023/4/1310分布函数F(x)的性质(1)F(x)是非减函数,即若x1<x2,
则(3)
F(x)是右连续函数,即任意实数x事件“X≤x”当x→-∞时趋于不可能事件;事件“X≤x”当x→+∞时趋于必然事件.连续随机变量X的分布函数F(x)在(-∞,+∞)连续2023/4/1311例4.
设某种电器系统的电压
X(以伏计)是一随机变量,
它的概率密度为求:X的分布函数,P(X<3),P(-2<X<5),P(X>1)解:2023/4/1312练习.设随机变量X的概率密度为求随机变量X的分布函数.解:当-∞<x<0时,当0≤x<2时,当2≤x<+∞时,2023/4/1313设连续随机变量X的分布函数为解:(1)由分布函数的性质知即求:(1)A,B的值;(2)P(-1≤X≤1);(3)X概率密度f(x).例5.2023/4/1314即所以X的分布函数为(3)X的概率密度为2023/4/1315定义:设随机变量X的概率密度为则称X在区间(a,b)上服从参数为a,b的均匀分布,两种重要的连续型分布记作1.均匀分布(Uniformdistribution)1,F(x)=x<a,0,a≤x<b,x≥b.P(X≤x)=其分布函数:2023/4/1316
0abx
X“等可能”地取区间(a,b)中的值,这里的“等可能”理解为:X落在区间(a,b)中任意等长度的子区间内的可能性是相同的。或者说它落在子区间内的概率只依赖于子区间的长度而与子区间的位置无关。意义事实上,对[a,b]上的任子区间[c,c+l],有2023/4/1317试求他到达车站3分钟内就有公共汽车到站的概率。该乘客等车时间X,例6.某公共汽车站每10分钟有一辆汽车通过,乘客对于汽车通过该站的时间完全不知道,一位一时刻到车站的可能性均等,他在任记X为他的等车时间,解:0<X<10,(0,10)服从均匀分布,它在因此其分布密度为从而,所求概率为2023/4/1318有实根的概率.例7.在[0,5]中任取一数ξ,求方程解:ξ是[0,5]的均匀分布随机变量,所求概率为2023/4/13192.指数分布(Exponentialdistribution)定义:设随机变量X的概率密度为则称X服从指数分布,或称X服从负指数分布12023/4/1320
4.随机服务系统中的服务时间;……1.它常用于动物、电力设备和电子元件使用寿命;2.电话的通话时间;3.排队时需要等待时间;指数分布的应用指数分布在生存分析、可靠性理论和排队论中有广泛的应用.例如:2023/4/1321无记忆性对任意s,t>0,有如果X是某一元件的寿命,已知元件已使用了s小时,它总共能使用至少s+t小时的条件概率,与开始使用时算起它至少能使用t小时的概率相等。也就说,元件对它已使用过s小时没有记忆。无记忆性是指数分布广泛应用的重要原因。2023/4/1322当x≤0时,当x>0时,指数分布的分布函数求X的分布函数F(x).解:2023/4/1323(1)求元件寿命至少为200小时的概率;例8.已知某电子元件的寿命(以小时计)X服从指数分布,其概率密度为解:2023/4/1324(2)将3只元件连成一个系统.设系统工作的方式是至少2只元件失效时系统失效,又设3只元件工作相互独立.求系统的寿命至少为200小时的概率.例8.已知某电子元件的寿命(以小时计)X服从指数分布,(1)求元件寿命至少为200小时的概率;解:设Y记3只元件中寿命至少为200小时的元件的只数,则系统的寿命至少为200小时的概率即2只或3只元件的寿命至少为200小时的概率:2023/4/13252023/4/1326内容小结1.理解连续随机变量的概率密度及其性质;2.熟悉两种常用的连续分布:均匀分布:X~U(a,b)指数分布:2023/4/13273.理解随机变量的分布函数及其性质.F(x)=P(X≤x)(1)
X离散随机变量,其概率函数则其分布函数为(2)X连续随机变量,其概率密度f(x)≥0,则其分布函数为2023/4/1328习题二:8,9,11,12(2),13,14
作业
2023/4/1329备用题1.判断正误:(1)概率函数与密度函数是同一个概念。()(2)设X是随机变量,有()若的密度函数为
(3)若X的概率密度为则()2023/4/1330不一定为0,故一般情况下,答案:(1)×;(2)×;(3)×.分析(1)概率函数是离散随机变量中的概念,密度函数是连续随机变量的概念,不是同一概念.(2)当X是离散随机变量时,P(X=a)和P(X=b)当X是连续随机变量时,P(X=a)=P(X=b)=0故2023/4/1331(3)显然X是连续随机变量,根据密度函数的性质X的密度函数为于是因此命题有误.2023/4/1332二、选择题1.设离散随机变量X的概率分布为则c的值为().2.设在[a,b]上,随机变量X的概率密度为f(x)=sinx,而在[a,b]外,f(x)=0,则区间[a,b]等于:().2023/4/1333(2)根据连续随机变量X的概率密度的2个性质,分析(1)根据离散随机变量X的概率分布性质选C.由非负性在[a,b]上f(x)=sinx≥0,可排除C,D.由规范性可排除B,故选A2023/4/1334三、计算题求待定系数的值并求分布函数及相关概率值.典型题Ⅰ已知含有待定系数的概率密度函数,1.设随机变量X的概率密度为(1)求常数A;(2)求X的分布函数;(3)求P(X>1)2023/4/1335故A=20.解:(1)由概率密度的性质得2023/4/1336(2)当x<0时,当0≤x<1时,当x≥1时,所以X的分布函数为2023/4/1337典型题Ⅱ已知含有待定系数的分布函数,确定2.设连续随机变量X的分布函数为系数,并求概率密度函数.解:(1)由分布函数的性质知即求:(1)A,B的值;(2)
P(-1≤X≤1);(3)X概率密度f(x).2023/4/1338即所以X的分布函数为(3)X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-浙江-浙江假肢制作装配工一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南水文勘测工三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南护理员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南印刷工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河北-河北药剂员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河北-河北林木种苗工四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西放射技术员二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西中式烹调师四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西有线广播电视机务员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西垃圾清扫与处理工一级(高级技师)历年参考题库典型考点含答案解析
- HG+20231-2014化学工业建设项目试车规范
- 《百变扭扭棒》大班艺术课件
- FZT 73013-2017 针织泳装行业标准
- 软件开发功能验收表
- 生产部门年度经营计划
- 售后工程师的安全意识与操作规范
- 热力公司入户维修培训课件
- 给予肠内营养支持品管圈课件
- 2024-2025年全国初中化学竞赛试卷及答案
- 躺平与内卷现象看法
- 浆膜腔积液细胞病理学国际报告系统
评论
0/150
提交评论