




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.2.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.3.A. B. C. D.4.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.1205.如图是一个算法流程图,则输出的结果是()A. B. C. D.6.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.7.在中所对的边分别是,若,则()A.37 B.13 C. D.8.若数列满足且,则使的的值为()A. B. C. D.9.若,,则的值为()A. B. C. D.10.若各项均为正数的等比数列满足,则公比()A.1 B.2 C.3 D.411.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从正态分布,若,则_________.14.数列的前项和为,则数列的前项和_____.15.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.16.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.19.(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.20.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.21.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.22.(10分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.2、C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.3、A【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.4、B【解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.5、A【解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.6、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.7、D【解析】
直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.8、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.9、A【解析】
取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.10、C【解析】
由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.11、B【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.12、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,
该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、0.4【解析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.14、【解析】
解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【点睛】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.15、2【解析】
联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可.【详解】如图,设,由,则,由可得,由,则,所以,得.故答案为:2【点睛】此题考查了抛物线的性质,属于中档题.16、【解析】
由题意可设,,,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于.【详解】解:,且,可设,,,,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:.【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费.【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为204219228273291(元);(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为(元).【点睛】本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.18、(1):,:;(2),此时.【解析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离当且仅当时,取得最小值,最小值为,此时的直角坐标为.试题解析:(1)的普通方程为,的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.当且仅当时,取得最小值,最小值为,此时的直角坐标为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.19、(1);(2)【解析】
(1)设出两点的坐标,由距离之积为16,可得.利用向量的数量积坐标运算,将转化为.再利用两点均在抛物线上,即可求得p的值,从而求出抛物线的方程;(2)设出直线l的方程,代入抛物线方程,由韦达定理发现直线l恒过定点,将面积用参数t表示,求出其最值,并得出此时的直线方程.【详解】解:(1)由题设,因为,到轴的距离的积为,所以,又因为,,,所以抛物线的方程为.(2)因为直线与抛物线两个公共点,所以的斜率不为,所以设联立,得,即,,即直线恒过定点,所以,当时,面积取得最小值,此时.【点睛】本题考查了抛物线的标准方程的求法,直线与抛物线相交的问题,其中垂直条件的转化,直线过定点均为该题的关键,属于综合性较强的题.20、(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【详解】(1)在中,已知,,,由正弦定理,得,解得.(2)因为,所以,解得.在中,由余弦定理得,,即,,故.【点睛】本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.21、(1);.;(2)【解析】
(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.22、(Ⅰ)见解析(Ⅱ).【解析】
(I)取的中点,连接,通过证明平面得出;(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角.【详解】(I)证明:取AC的中点M,连接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP⊂平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 80000-4:2019/AMD1:2025 FR Amendment 1 - Quantities and units - Part 4: Mechanics
- 【正版授权】 ISO 18510-1:2025 EN Measurement of radioactivity in the environment - Bioindicators - Part 1: General guidance to the sampling,conditioning and pre-treatment
- 【正版授权】 ISO 1135-5:2025 EN Transfusion equipment for medical use - Part 5: Transfusion sets for single use with pressure infusion apparatus
- 【正版授权】 IEC 63489:2025 EN-FR Common data concepts for smart manufacturing
- 校园应急知识培训课件会
- 法警面试题目及答案
- 学车模拟考试试题及答案
- 吕梁分班考试题及答案
- 校园安全知识培训课件实施
- 扫路车考试试题及答案
- T/CECS 10246-2022绿色建材评价智能坐便器
- 2025-2030年中国硅酸钇镥(LYSO)市场深度调查与发展前景预测报告
- CCF全国青少年信息学奥林匹克联赛NOIP 2024真题
- 社区健康教育知识讲座
- JISG3141-2017冷轧钢板及钢带
- 2025届苏锡常镇高三语文一模作文解读及范文:我会洗碗呀
- 义务消防队组建方案
- 2025-2030中国ARM核心板行业市场现状分析及竞争格局与投资发展研究报告
- 脐灸技术操作流程图及考核标准
- 给药错误PDCA课件
- 医美注射培训
评论
0/150
提交评论