DNV-2050年海运预测(英)-2022-84正式版_第1页
DNV-2050年海运预测(英)-2022-84正式版_第2页
DNV-2050年海运预测(英)-2022-84正式版_第3页
DNV-2050年海运预测(英)-2022-84正式版_第4页
DNV-2050年海运预测(英)-2022-84正式版_第5页
已阅读5页,还剩79页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MARITIMEFORECASTTO2050EnergyTransitionOutlook2022DNVMaritimeForecastto2050FOREWORDLetmestartwiththepositivenews:newbuildordersandrecentindustryprojectsprovethatthemaritimeenergytransitionisaccelerating.Thenecessarypracticalconsiderationsaretakingshape,andship-ownershavestartedtofuture-prooftheirassets.ApplyingourCarbon-RiskFramework,launchedbackin2020,hasalsocontributedtorobust,cost-efficientshipdesigns.sustainablesharesinthe2050fuelmix–beitbiofuels,e-fuels,orfossilfuelswithcarboncaptureandstorage–reliesonsoundglobalindustrydecisionsandcollabo-ration.Themaritimeindustrymustcontinuallyseekconsensuswithotherindustriestoensurethatsustain-ableenergyresourcesaredirectedtowheretheycanreducegreenhousegasemissionsmost.Encouragingly,newbuildvesselsareincreasinglybeingorderedreadytorunonalternativefuels,withLNGdominantfornow.Substantialinvestmentisgoingintoresearchingsafeandeconomicallyfeasiblealternativecarbon-neutralfuelsandintodevelopingfueltechnolo-gies.Butthiswillcountforlittleiftheindustryanditsstakeholdersdonotcollaboratetoovercometheultimatehurdle,fuelavailability.Alreadyby2030,5%oftheenergyforshippingshouldcomefromcarbon-neutralfuels,requiringhugeinvestmentsinonboardtechnologiesandonshoreinfrastructure.Navigatingtheoptionsiscomplex,notleastbecausethereisnosingle‘winner-takes-all’alternativefuelandtechnology.Ourupdatedmodel-Our6thMaritimeForecastto2050reportzeroesinonthiskeyissueandoutlinesunderwhatconditionseachnewfueltypewillproliferate.Whichofthemcapture2Forewordlingpointstoadiversefutureenergymixofcarbon-neutralandfossilfuels,withthelattergraduallyphasedoutby2050.Ifwepushtowardsfulldecarbonizationby2050,thefuelinfrastructureneedstodeliveraround270milliontonnesofalternativefuelsaccordingtoourmodellings.Amammothchallenge.However,Iamconvincedthat,togetherwecanbuildabetter,greenermaritimefuture.Weshoulduseallavailableoptionstoprogresstowardsandreachnetzero.Ourfindingsreinforcetheneedforstrongalliancestopushthedevelopmentofsupplychainsthatcanensurefuelavailability.TheentireIhopethatyouenjoyreadingthereportandfindvalueinitsresearchfindingsfordecision-makingandstrate-gizing.maritimevaluechain–charterers,energymajors,fuelsuppliers,governments,financiers,ports,andshipown-ers–shouldcollaboratetoensureadequatefundingandapplyittotherightprojects.Greenshippingcorridorscanserveaslaunchpads,alsoreducingtheriskofportinfrastructurebecomingobsoleteasthefuelmixshifts.Enroutetodecarbonizationtargets,employingthefullpowerofdigitaltoolsformoreenergy-efficientvesselscandeliverupto15%ofGHGemissionsavingsrequiredby2050.Manysuchtoolsareavailable,andIamconfidentthatevenmorepromisingoneswillbelaunchedinthecomingdecades.KnutØrbeck-NilssenCEOMaritime,DNV3DNVMaritimeForecastto2050CONTENTSForeword265Pathwaysfordecarbonizationofshipping56ExecutiveSummaryIntroduction5.1UpdatedGHGPathwayModel585.2Exploringdecarbonizationscenarios6012165.3Scenarioresults61Outlookondriversandregulationsfordecarbonization5.4Emissionsreductioncontributionbymeasure20672.1Regulatorydevelopments245.5Fuelfamilies’contributiontothe2050energymix2.2Well-to-wakeGHGemissionsandsustainabilityoffuels67692728305.6Investmentneeds2.3Theneedforstandardstosupportdecision-makingandfunding5.7Exploringtheeffectoffirstmoversandincreasedavailabilityoffuels713OutlookonshiptechnologiesandfuelsAppendix733.1AvailableshiptechnologiesandfuelsfordecarbonizationofshippingA.1RegulatoryinputA.2ProjectiononfuelpricesA.3Energy-efficiencymeasuresA.4SpeedreductionA.5Logistics73747676777832343.2Statusoffueltransition3.3Outlookforthereadinessofonboardfueltechnologies353.4Digitalization–enablingthetransition41A.6Tradegrowth4OutlookonalternativefuelproductionandinfrastructureA.7Converteroptions,maturity,andcompatibility4479A.8NewbuildandretrofitfueltechnologyCapex4.1Existingfuelsupplychain4780814.2Futureenergysupplychains–andmainbarriersA.9Newfeaturesofourmodel48References824Contents56EXECUTIVESUMMARY7DNVMaritimeForecastto20508ExecutivesummaryEXECUTIVESUMMARYMaritimeForecastto2050isoneoutofDNV’ssuiteofEnergyTransitionOutlookreports.Thislatesteditionprovidesanindependentoutlookofthemaritimeenergyfutureandexamineshowtheenergytransitionwillaffecttheindustry.Thefocusisonfuelavailabilityandinfra-Maritimeregulationwhichaimstoincreasetheuseofcarbon-neutralfuelsthroughanincreasinglystringentwell-to-wakeGHGintensityrequirement.Theseproposalsmaybefinallyadoptedlaterin2022andtakeeffectfrom2024and2025,respectively.structuretotackletheshifttocarbon-neutral1fuels.Our—Theregulatoryandcommercialdriversareenabledbysupportingframeworksandstandardsspecifying,forexample,thesettingofscience-based,net-zeroGHGemissionstargets;taxonomiesforsustainableactivi-ties;sustainabilityevaluationcriteriaandcalculationmethodsforthewell-to-wakeGHGemissionsoffuels;andsupply-chainemissionreportingrequirements.updatedscenarioanalysisprovidessignificantnewinsightscomparedwithour2020analysis.Themaritimeindustrywillgothroughaperiodofrapidenergyandtechnologytransitionthatwillhaveamoresignificantimpactoncosts,assetvalues,andearningcapacitythanmanyearliertransitions.Shipownersarealreadyexperiencingincreasingpressuretoreducethegreenhousegas(GHG)footprintofmaritimetransport.Thispressureisbeingexertedbythreefundamentalregulatoryandcommercialdrivers:regulationsandpolicies,accesstoinvestorsandcapital,andcargoownerandconsumerexpectations.Figure1showsanoverviewofadoptedandproposedregulationsfromtheIMOandtheEU.Respondingtothedriversfordecarbonization,shipown-erswillneedtoapplynewtechnologiesandfuelstoreduceemissions.Thisreportprovidesanupdatedoutlookonshiptechnologiesandfuels,withanupdatedtimelineforthetechnologyreadinesslevelsofselectedalternativefueltechnologies,includingonboardcarboncaptureandstorage(CCS).Ourupdatedoutlookforthesedriversshowsthat:—TheInitialIMOGreenhouseGasStrategy(‘theIMOStrategy’)currentlydrivespolicydevelopmentwithininternationalshipping,andthenextwaveofregulationswilltakeeffectfrom1January2023.TheyaretheCII,Wefindthat:EEXI,andSEEMPPartIII.2Weexpectthemtohavea—Thetrendoflargershipsbeingorderedwithalternativefuelpropulsioniscontinuing,withfossilLNGasthedominantfuel(seeFigure2).Around5.5%ofthetotalgrosstonnageofshipsoperatingtoday,andathird(33%)ofthegrosstonnageonorder,canorwillbeabletooperateonalternativefuels.Thisincludesliquefiednaturalgas(LNG)carriers.Theuptakeofmethanolandliquefiedpetroleumgas(LPG),andthefirsthydro-gen-fuellednewbuilds,arestartingtoshowinthestatistics.significantimpactondesignandoperationsofallships.—TheIMOStrategywillberevisedin2023,possiblystrengtheningitsemission-reductionambitions.Thiswillbefollowedbydevelopingthenextwaveofregulationsincludingmarket-basedmeasuressettingapriceonCOandarequirementtoaccountforwell-to-ꢀwakeGHGemissionintensityoffuels.3—TheEUhasproposedtoincludeshippingintheEUEmissionsTradingSystem(EUETS)andtheFuelEU123FuelsthathavenonetGHGemissions;seeIntergovernmentalPanelonClimateChange(IPCC)definitionofcarbon-neutralathttps://www.ipcc.ch/sr15/chapter/glossaryCarbonIntensityIndicator(CII);EnergyEfficiencyeXistingshipIndex(EEXI);ShipEnergyEfficiencyManagementPlan(SEEMP)Well-to-wakereferstotheassessmentofGHGemissionsfromprimaryproductiontocarriageofthefuelinaship'stank(well-to-tank,or‘upstreamemissions’)andfromtheship'sfueltanktotheexhaust(tank-to-propellerortank-to-wake,or‘downstreamemissions’).See/en/MediaCentre/HotTopics/Pages/Cut-ting-GHG-emissions.aspx9DNVMaritimeForecastto2050—Thestronginterestinammoniaasfuel,asreflectedintationofsafetyregulations.Thetoxicityofmethanolandammonia,andextremeflammabilityofhydrogen,bringsnewsafetychallenges.conceptsandpilotstudies,iscurrentlyrestrictedbyimmatureconvertertechnologies.—Ammoniaandhydrogenonboardfueltechnologieswillbeavailableinthreetoeightyears,accordingtoourestimates.Forammonia,weseedevelopmentof2-strokeand4-strokeenginetechnologiesonparallelpaths,enablinguptakeindeep-seaandregionalshort-seashipping.—ThereisincreasedinterestinusingonboardCCSwithconventionalfossilfuelsbecauseofsignificantbarrierstotheuptakeofcarbon-neutralfuels.OnboardCCSmaybeapplicableforsomeshipsegmentsdependingonregulatoryandland-basedinfrastructuredevelopments.MoredemonstrationandpilotprojectswillbeneededtoenhancethetechnologyreadinessofonboardCCS.SeveralongoingR&Dprojectsaddressbarrierstoimplemen-tation.—Short-seashippingisexpectedtobeinstrumentalformaturinghydrogentechnology.Consequently,thedevelopmentoffuelcellsand4-strokeenginesisaheadofotherhydrogenenergyconverters.—Thecurrenttechnologyreadinesslevelsofmethanolfueltechnologiesarehigherthanforammoniaandhydrogen.Thisreportalsoprovidesanoutlookonalternativefuelproductionandinfrastructure.Decarbonizingshippingwillresultinaprofoundtransitioninthewayfuturemarinefuelsareproducedandmadeavailabletotheshippingfleet.—Usingnewfuelsandfueltechnologieswillrequireallmaritimeindustrystakeholderstofocusincreasinglyonsafety,includingthedevelopmentandimplemen-Figure1IMOandEUregulatoryframeworkforGHGemissionsreductionfrominternationalshippingEUEmissionsTradingSystemGlobalmarket-basedmeasureFuelEUMaritimeIMO–adoptedIMO–proposedGlobalGHGfuelstandard•Addresses:Ship/fleetGHGemissions•Applicablemeasures:AllGHGreductionmeasures•Addresses:Fuelwell-to-wakeGHGintensity•Applicablemeasures:Alternativefuels,shorepower,windEU–proposed(Fitfor55)OperationalrequirementDesignrequirementFleetemissionsGHGpriceFUELCarbonIntensityIndicatorShipEnergyEfficiencyManagementPlanEEDI/EEXI•Addresses:Actualcarbonintensity•Applicablemeasures:Allmeasuresexceptlogistics•Addresses:Idealcarbonintensity•Applicablemeasures:Newships:Hull,machinery,LNG,speed;Existingships:Speed,basichullimprovements•Addresses:Continuousimprovement•Applicablemeasures:Allmeasuresexceptlogistics10ExecutivesummaryWefindthat:emissions.TomaximizetheGHGreductionpotentialofsustainablebiomass–potentiallyanimportantsourceforcarbon-neutraldrop-infuelsforconven-tionalmachinery–thisshouldbereservedforhard-to-abatesectorslikeshippingandaviation,ratherthanforelectricityproduction.—Shipping’sfuturefuelmarketwillbemorediverse,reliantonmultipleenergysources,andmoreintercon-nectedandintegratedwithregionalenergymarkets,regionalenergyproduction,andregionalindustry.—Futurefuelsupplyforshippingwillrelyonavailabilityandpriceoftheenergysources:renewableelectricity,sustainablebiomass,orfossilenergywithCCS(seeFigure3).Availabilitymayconstrainthecomingenergytransitioninshipping.—Providedthatenergycanbemadeavailable,produc-tioncapacitywillbeabarrierandmustbescaleduptomeetshipping’scomingdemandforcarbon-neutralfuels.Thiswillrequiremassiveinvestment,thoughsomeexistingproductionfacilitiescanbereused.Forthevariousfuelproductionandsupplypaths,thefocusshouldbeonreducingenergylossesinproduction,distribution,andconversiononboard.Developingthenecessaryinfrastructureandproductioncapacitywill—Becausenoindustrycandecarbonizeinisolation,globalindustriesneedtomaketherightchoicestogether,andsustainableenergyshouldbedirectedtowhereithasthebiggestimpactonreducingFigure2AlternativefueluptakeintheworldfleetbynumberofshipsandgrosstonnageNUMBEROFSHIPSShipsinoperationShipsonorder11Methanol19LPG3Hydrogen35Methanol57LPG98.8%conventionalfuel396Battery/Hybrid78.9%conventionalfuel417Battery/HybridWorldfleet923LNGOrderbook534LNG1349Total1046TotalIN%OFGROSSTONNAGEShipsinoperation0.02%Methanol0.06%LPGShipsonorder0.02%Battery/Hybrid1.45%Methanol0.06%Battery/Hybrid1.52%LPG94.5%conventionalfuel66.8%conventionalfuel5.39%LNG30.2%LNGWorldfleetOrderbook5.5%Total33.2%TotalKey:Liquefiednaturalgas(LNG);liquefiedpetroleumgas(LPG)Sources:IHSMarkit()andDNV’sAlternativeFuelsInsightsfortheshippingindustry–ꢀAFIplatform()11Figure3Thefuturecarbon-neutralenergysupplychainBioElectroBlueCO212Executivesummarytaketime,becostly,andinvolvemanystakeholdersinthesupplychain.—variationsforspecificfueltypes,inwhichkeyinputfactorsimpactingtherelativecostdifferencesbetweenfuelswithineachfamilyareexamined.—Co-operationwithmajorenergyandfuelproviderswillbeimportanttosupplythefuturefuels.Portswillplaykeyrolesinthegreenmaritimetransitionbyservingasenergyhubsprovidingbothshore-sideelectricityandinfrastructureforstoringandfuellingshipswithfuturefuels,aswellassupportingthefirstmoversandestablishinggreenenergycorridors.Regardingthefuturefuelmixinthemodelledscenarios(Figure4),wefindthefollowing:—Regulatorypoliciesandprimaryenergypricesarekeydriversforuptakeofcarbon-neutralfuelandthefuturefuelmix.Theuptakeofcarbon-neutralfuelneedstopickupinthemid-2030s,reaching40%ofthefuelmixin2050underthecurrentIMOambitionsand100%todecarbonizeshippingfully.Fossilverylowsulphurfueloil(VLSFO)/marinegasoil(MGO)andLNGareinrapiddeclinebymid-centuryorarephasedoutcompletelyinthemostambitiousdecar-bonizationscenarios.LNG,however,seessignificantuptaketoaround20%to30%ofthefuelmixpriortotheaccelerationofthetransitiontocarbon-neutralfuels.Figure4presentstheenergymixin2050forthe24modelledscenarios.Thisyearwepresentanupdatedportfolioofscenarios,builtwithanenhancedversionofourGHGPathwayModeltoexplorethefueltransitionthatshippingisfacing.Weinvestigatehowthefuturefuelmixanduptakeofcarbon-neutralfuelsareimpactedbytheavailabilityofenergysourcesandotherkeyinputsforfuelproduction,andbypriceassumptionsonemergingfuels,technologies,andretrofits.Wealsoassessfuelcostsregionally,andhowthebuild-upofregionalfuelproductionandinfrastructureimpactthedevelopmentofthefuelmix.—Itishardtoidentifyclearwinnersamongthemanydifferentcarbon-neutralfueloptionsgiventheuncertaintiesonpriceandavailability,butwecanoutlineunderwhatconditionseachwillproliferate.Bio-LNG,bio-MGOandbio-methanol,whicharerelativelyenergy-densehydrocarbons,wouldbethepreferredfuels,givensufficientavailabilityofsustain-ablebiomass.Theuptakeofbio-methanolisverysensitivetotheproductioncostcomparedwithbio-MGOandbio-LNG.Withlowavailabilityofsustainablebiomass,thepricesofbiofuelswilllikelybeuncompetitivewiththoseofelectrofuelsandbluefuels.Significantuncertaintiesaroundseveralfactorsinflu-enceourprojectedenergytransitionfromconventionaltocarbon-neutralfuels.Consideringtheseuncertain-ties,whichprecludedevelopingasingle‘mostlikely’projection,wehavedevelopedandprovideasetofscenarios.Eachdescribesapossibledevelopmentofthefuturefleetcomposition,energyuseandfuelmix,andemissionsto2050,underaparticularsetofframingconditions,andwithoutprejudgingthelikelihoodoftheseconditions.Wehavedeveloped24scenariostoexplore:—Theavailabilityofelectrofuelsdependsfirstlyontheavailabilityofrenewableelectricitytoproducehydro-genbyelectrolysis.Thisrequiresthephasingoutoffossilenergyfrompowergeneration,whichisstillalongwayoffinmostregions.Usingelectricityevenpartlygeneratedfromfossilfuelstoproduceelectro-fuelsisnotenergyefficientandcouldleadtohighernetemissions.Thesecondprerequisiteforelectrofu-elsistheavailabilityofsustainablecarbonfromeitherbiogenicsourcesordirectaircapture.Thiscarbon—twodecarbonizationpathways,oneinwhichshippingachievestheambitionssetinthecurrentIMOGHGStrategy,includinga50%reductionoftotalGHGemissionsin2050;andasecond,inwhichtheambitionistodecarbonizethefleetby2050.—variationsonthreefuelfamilies,inwhichwesimulatetheavailabilityofsustainablebiomasstoproducebiofuels,renewableelectricitytoproducee-fuels,andfossilfuelscombinedwithCCStoproducebluefuels.13DNVMaritimeForecastto2050couldbecombinedwiththehydrogenproducedbyelectrolysistoproducee-MGO,e-LNG,ore-metha-fuel,withbio-MGOore-MGObeingusedaspilotfuels.4nol,againtakingadvantageofusingmoreener-gy-densefuels.Withoutthiscarbonbeingavailableandaffordable,e-ammoniawouldbethepreferred—Theavailabilityofbluefuelsdependsontheeffective-nessofcarboncapture,aswellasinfrastructureforpermanentstorageofthecapturedcarbon.Withhigh4Theprefix‘e-‘denotesanelectrofuel,‘bio-‘abiofuel,and‘blue’afuelproducedfromfossilenergywithCCSFigure4Our24scenariosforthemaritimeenergymixin205012FossilfuelsHFO+scrubberLSFO+MGOLNG345Biofuelsbio-MGO6bio-LNG7bio-methanol89Electrofuelse-MGO101112131415161718192021222324e-LNGe-NH3e-methanolBluefuelsblueNH3Electricityfromgrid0%10%20%30%40%50%60%70%80%90%100%Key:Ammonia(NH3);biofuel(bio-);electrofuel(e-);fossilfuelwithCCS(blue);heavyfueloil(HFO);liquefiednaturalgas(LNG);lowsulphurfueloil(LSFO);marinegasoil(MGO)14Executivesummaryavailability,blueammoniaisthepreferredfuel,withbio-MGOore-MGOaspilotfuels.MatureCCStechnologyandinfrastructurecouldalsomakeonboardCCSaviablealternativewherefossilfuelscontinuetobeusedontheship.ConcludingremarksTheinitialpreparationfordecarbonizationiswellunder-waywithregulatoryandcommercialdriversandasupportingframeworkcomingintoplace.Scrutinyisfocusedonfullsupply-chainemissions,includingfromshipsandtheproductionandsupplyoffuel.Weseeprogressinonboardfueltechnologydevelopment,andthefleet’suptakeofalternativefuelsisincreasing.However,severalfueltechnologiesthatmaybeneededin2050areimmature.—Theuseofdrop-infuels–suchasbio-LNG,e-LNG,bio-MGOande-MGO–issignificantinallscenariosanddependsonthepaceofdecarbonization.Withslowerdecarbonizationwithmoderateoperationalrequirements,fossilfuelscombinedwithjusttherequiredamountofdrop-infuelsarepreferredtoswitchingtoammoniaormethanolfuelsystems,eventhoughthesefuelsarelikelylessexpensivethanthedrop-infuels.Moreeffortisneededtobringdownbarriersandspeeduptheprogressofnext-generationcarbon-neutralships.Thiswillrequireacceleratedtechnologydevelopment,large-scalepilotingfordeep-seavessels,andensuringsafeapplicationofnewfuelsonboardandonshore.Strongeremphasisisneededonsystem-levelthinkingandintegrationofallavailabletechnologies.Thiswillrequiretime,investment,andcombiningeffortsfromallstakeholdersinthemaritimesupplychain.Greenenergycorridors,aconcepttakingshapenow,couldsupportthiseffortbypairingcommitmentsonfuelsupplyanddemand,andreducingfirst-moverrisk.Theideaistohelpstartshippingdecarbonizationbyincreasingtheavail-abilityofalternativefuelsinconnectedregions.Significantinvestmentisneededincomingdecadestoenablethetransitiontocarbon-neutralshipping.Wefindthat:—USD8billion(bn)to28bnisneededannuallyinadditionaltotalinvestmentonshipsinatransitionphasetowardsdecarbonizationin2050.Thelargestinvestmentscomeinscenarioswithhighuptakeofammoniaormethanol.—Fuelinfrastructureinvestmentswilloutpaceonboardinvestmentsinalmostallscenarios.Decarbonizingshippingcompletelyby2050willrequireabout2.5timesmoreinvestmentthanifpursuingcurrentIMOambitions.AboutUSD28bnto90bnperyearisneededonshoretoscaleupproduction,fueldistribu-tion,andbunkeringinfrastructuretosupply100%carbon-neutralfuelsby2050.Thelargestinvestmentscomeinscenarioswithhighuptakeofelectrofuels.—ThemoreexpensiveenergysourcesandonshoreinvestmentscouldincreasetheannualfuelcostsbymorethanUSD100bnto150bnwhenfullydecarbon-ized,a70%to100%increasefromtoday.Shipownersandotherstakeholders–suchasgovern-ments,charterers,portsandfuelsuppliers–canuseour24scenariostosupportdecision-makingtominimizecarbonriskandexploreeffectivepolicyinterventionssuchasgreencorridors.UncertaintyoverthepriceandavailabilityofenergysourcesmeansthatfuelflexibilityandFuelReadysolutions,combinedwithimprovedenergyefficiency,remainkeystrategiesthatcouldeasethetransitionandminimizetheriskofinvestinginstrandedassets.Digitalizationwillenabletheunlockingoffurtherenergy-efficiencypotentialandwillsupportthenecessarycollaborationandinformationsharingneededtoacceleratethetransition.15161INTRODUCTION17DNVMaritimeForecastto20501INTRODUCTIONTh’s2022suiteofEnergyTransitionOutlookreports.ThislatesteditionofMaritimeForecastto2050givesanindependentoutlookofthemaritimeenergyfutureandexamineshowthetransitionwillaffecttheindustry.Itprovidesvaluableinsightsfordecisionmakersrangingfromshipowners,charterers,fuelsuppliers,ports,financeandinsurance,throughtonationalandregionalpolicymakers.18dCHAPTER1Morespecifically,theoutlookfocusesonfuelavailabilityandinfrastructuretotackletheshifttocarbon-neutralinvestmentsareneededduringthenextdecadestoenablethetransition.Whiletheindustryhasbeendiscussingemissionsreductionformanyyears,themostlikelysolutionsstillfacechallengesandbarriersincluding–thefocusofthisyear’sstudy–fuelavailability.DNV’salternativefueluptakeanalysisindicatesthatthetransi-tionhasstartedslowly,with33%ofgrosstonnageintheorderbookabletooperateonalternativefuel(heavilydominatedbyLNG).5fuels.Wesignificantlyupdateour2020scenarioanalysisofthemaritimeenergyfuture(DNV,2021c;DNV,2020)asshippingexperiencesincreasingpressuretodecarbonizeoperationsandreduceemissionstoair.Regulatoryrequirementsaddressinggreenhousegas(GHG)emis-sionstakeshapeinboththeIMOandEU,andareenabledbysupportingframeworksandstandards.Examplesoftheseenablersare:settingscience-basednet-zeroGHGemissionstargets;taxonomiesforsustainableactivities;sustainabilityevaluationcriteriaandwell-to-wakeGHGemissioncalculationmethodsforfuels;andsupplychainreportingrequirements.Mostnotably,inApril2018theIMOadoptedanambitiousGHGemissions-reductionstrategyforinternationalshipping.2023willseetheimplementationoffurtherregulatorymeasurestoaddressthedecarbonizationofshipping.InNovember2021,theIMOMarineEnvironmentProtectionCommit-tee’s77thsession(MEPC77)alsorecognizedtheneedtostrengthentheambitionsofitsGHGstrategywhenitisrevisedin2023.Increasingly,wealsoseekeystakehold-erssuchasbanksandcargoownersfocusingondecar-bonization.Allthispointstoachangingbusinessenvironmentforshipsinthenearfuture,shapingthefuturefleetinimportantways,particularlyinthechoiceoffuelsandtechnologies.Inthisyear’sreportwehaveupdatedourscenariolibraryofregulations,futuretechnologies,andcosts,tounder-standthecomingtransitionsothatstakeholderscanmakeinformeddecisions.Wehavemodelledtwodifferentdecarbonizationpathways:thecurrentIMOambitionsto2050,andafulldecarbonizationby2050.WerefertothesehenceforthasIMOambitionsandDecarbonizationby2050.Ourdecarbonizationmodel-lingshowsadiverseenergymixcomprisingbothfossilandcarbon-neutralfuels,wherefossilfuelsaregraduallyphasedoutby2050.Thisreportstartsbypresentingupdatedoutlooksondriversandregulations(Chapter2)thenshiptechnolo-giesandfuels(Chapter3),withestimatedmaturationtimelinesforenergyconverters,onboardCCStechnolo-gies,andcorrespondingsafetyregulationsforonboarduse.Weintroduceanentirelynewoutlookonalternativefuelproductionandinfrastructure,includingavailabilityandpricesfromtheupdatedMarineFuelPriceMapper(Chapter4).Thesechaptersprovideinputtoourupdatedworldfleetscenariomodelling(Chapter5),includingmodellingoftheimpactofmeasurestoincreaseregionalavailability,suchasgreencorridors.Incontrasttopastenvironmentalrequirements,meetingGHGtargetsrequiresfundamentallymorechallengingtechnologicalandoperationalchangesforshipping.Inprevioustransitions,theindustrymovedfromwindtocoalandsteam,andthentooil–andeveryshipmadethesametransition.Forthetransitionnowunderway,therearemanyoptionsforcarbon-neutralfuels(bio,electro,orblue),suchasammonia,diesel,electricity,hydrogen,methaneandmethanol–allshipswillprobablynottransitiontothesamefuel.Theexistenceofmanytransitionpathwaysisdrivingcomplexity.Thechallengesincludeatransitiontonewandalternativeloworzero-carbonfuelsandnon-conventionaltechnologies.Thisrequiresthesimultaneousintroductionofnewtechnologiesonshipsandloworzero-carbonfuelproductionandinfrastructureonshore,wheresignificant5Fuelsthat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论