探索性数据分析简介课件_第1页
探索性数据分析简介课件_第2页
探索性数据分析简介课件_第3页
探索性数据分析简介课件_第4页
探索性数据分析简介课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索性数据分析简介ExploratoryDataAnalysis(EDA)探索性数据分析(EDA)是一个崭新的统计研究方向。近几十年来,已有多本关于EDA方面的著作和许多学术研究论文,实际应用也取得了明显成效。目前,探索性数据分析已得到统计学界的公认,是一个极有发展前途的新领域。DavidC.Hoaglin等著,陈忠琏等译.探索性数据分析.北京:中国统计出版社,19984/14/20231试验优化技术一、探索性数据分析的主要特点研究从原始数据入手,完全以实际数据为依据

传统的统计分析方法是先假定数据服从某种分布,如多数情况下假定数据服从正态分布,然后用适应这种分布的模型进行分析和预测。但客观实际的多数数据并不满足假定的理论分布(如正态分布),这样实际场合就会偏离严格假定所描述的理论模型,传统统计方法就可能表现很差,从而使其应用具有极大的局限性。EDA则不是从某种假定出发,而是完全从客观数据出发,从实际数据中去探索其内在的数据规律性。4/14/20232试验优化技术

分析方法从实际出发,不以某种理论为依据

传统的统计分析方法是以概率论为理论基础,对各种参数的估计、检验和预测给出具有一定精度的度量方法和度量值。EDA则以不完全正式的方法处理数据。在探索数据内在的数量特征、数量关系和数量变化时,什么方法可以达到这一目的就采用什么方法,灵活对待,灵活处理。方法的选择完全服从于数据的特点和研究的目的,并且更重视数据特征值的稳健耐抗性,而相对放松对概率理论和精确度的刻意追求。4/14/20233试验优化技术1.耐抗性(Resistance)所谓耐抗性即对于数据的局部不良行为的非敏感性,它是EDA追求的主要目标之一。对于具有耐抗性的分析结果,当数据的一小部分被新的数据代替时,即使它们与原来的数值很不一样,分析结果也只会有轻微的改变。人们关注耐抗性,主要是因为“好”的数据也难免有差错甚至是重大差错,因此数据分析时要有防御大错的破坏性影响的措施。EDA是一种耐抗分析方法,其分析结果具有较强的耐抗性。

中位数平滑是一种耐抗技术。中位数(Median)是高耐抗统计量,而样本均值不是。二、探索性数据分析的四大主题4/14/20235试验优化技术2.残差(Residuals)残差是数据减去一个总括统计量或模型拟合值以后的残余部分,即:残差=数据-拟合。例如:用若干对(xi,yi)拟合,则残差为。EDA认为,分析一组数据而不仔细考察残差是不完全的。EDA可以而且应该利用耐抗分析把数据中的主导行为与反常行为清楚地分离开。当数据的大部分遵从一致的模式,这个模式就决定一个耐抗拟合。耐抗残差包含对于这个模式的剧烈偏离及机遇起伏。4/14/20236试验优化技术3.重新表达(Re-expression)重新表达即找到合适的尺度或数据表达方式以更利于简化分析。EDA强调,要尽早考虑数据的原始尺度是否合适的问题。如果尺度不合适,重新表达成另一个尺度可能更有助于促进对称性、变异恒定性、关系直线性或效应的可加性等。重新表达亦称变换(Transformation),一批数据x1,x2,…,xn的变换是一个函数T,它把每个xi用新值T(xi)来代替,使得变换后的数据值是

T(x1),T(x2)

,…,T(xn)。

4/14/20237试验优化技术4.启示(Revelation)EDA强调启示。所谓启示就是通过EDA新的图解显示和各种分析显示,发现规律,得到启迪,满足分析者的需要:看出数据、拟合、诊断量度以及残差等行为,从而抓住意想不到的特点以及常见的一贯行为。4/14/20238试验优化技术2.次序统计量(OrderStatistics)若把数据批x1,x2,…,xn排成从小到大的次序,即

则叫做数据批x1,x2,…,xn的次序统计量。而x(i)是第i个次序统计量。在排序的基础上,从最小值到最大值各个数据值的先后名次,即为观测值的升秩(Upwardrank),即x(1)的升秩为1,x(2)的升秩为2,x(i)的升秩为i;类似地,有降秩的概念,在排序基础上,从最大值到最小值的先后名次即为降秩(Downwardrank),x(i)的降秩为n+1-i,同一个数据有:升秩+降秩=n+14/14/202310试验优化技术3.深度(Depth)数据批中一个数据值的深度是它的升秩与降秩两者中的最小值。在EDA中规定:次序统计量中,

两个极端值x(1)和x(n)的深度为1两个次极端值x(2)和x(n-1)的深度为2第i个数据值和第n+1-i个数据值的深度皆为i在EDA中,用深度的概念可以规定怎样从数据批中提炼出各种探索性总括值。4/14/202311试验优化技术5.四分数(Fourth)EDA规定:深度为的点为四分点,相应的数分别称为四分数。四分数有下、上两个,分别记作,则

[]表示取整运算,当d(F)遇有1/2时,表示四分数取深度d(F)相邻两数的平均。

4/14/202313试验优化技术由四分数的定义可知,每个四分数都在中位数和那个相应的极端值的半中间,从而两个四分数括住了这批数据的中间那一半,这一半通常被认为具有典型意义。显然,在次序统计量中,下四分数以下为“低值”部分,上四分数以上为“高值”部分。把中位数、四分数和极端数放在一起组成五数总括,可以给出一些又用的信息。

4/14/202314试验优化技术【例1】Bendixen(1977)给出了需要24小时以上呼吸支持(一种强化治疗)的11类病人的生存百分率。分析什么百分率是典型的。次序统计量为

i:1234567891011x(i):36374552565866687590100由于n=11,中位数深度d(M)=(11+1)/2=6,中位数M=x(6)=58;四分数深度d(F)=(6+1)/2=3.5,因而下四分数Fl=(x(3)+x(4))/2=48.5,上四分数Fu=(x(9)+x(8))/2=71.5将中位数、极端数、四分数放在一起的五数总括可知:这11类病人生存百分率的典型值是58%,尽管生存率可以高达100%,低到36%,但其中一半的生存率是48.5%~71.5%4/14/202315试验优化技术7.临界值(Criticalvalue)在EDA中,称Fl-1.5Fl与Fu+1.5Fl分别为下、上内界值,称最接近它们的数据为临界值,将小于下内界值和大于上内界值的数据称为界外值或离群值。进一步,又称Fl-3Fl与Fu+3Fl为下、上外界值,而称这之外的数据为远外值或异常值。EDA要求总括统计量要对离群值特别是异常值具有耐抗性。4/14/202317试验优化技术四、耐抗线性回归传统回归使用最广泛的是最小二乘回归,但最小二乘回归不能提供耐抗性。耐抗线性回归避免了这一困难。它把数据分成3个组,用组内中位数达到耐抗性。基本思路是:首先把n个数据点(x1,y1),…,(xn,yn)分成3个组,每个组内用中位数形成一个总括点,再在这3个总括点的基础上得到一条线,然后通过迭代调整或平滑这条直线。这种方法称为三组耐抗线法。4/14/202318试验优化技术1.形成3个组

首先把x的值排序,使得,在此基础上,把n个数据点(xi,yi)分成左、中、右3个组,使组的大小尽可能相等。当xi之间没有等值结时,组内的数据点数依赖于n除以3得到的余数:组n=3kn=3k+1n=3k+2左kkk+1中kk+1k右kkk+14/14/202319试验优化技术2.确定总括点在所形成的3个组内,先求组内x值的中位数,然后单独求y值的中位数,得到总括点的x坐标和y坐标:

(xL,yL)(xM,yM)(xR,yR)

得到的这3个总括点可能是数据点,也可能不是数据点,因为x和y的中位数是单独确定的。

这种确定组内总括点的方法给了拟合直线耐抗性。4/14/202321试验优化技术3.计算斜率和截距或中心值若回归直线为,则,初始直线的斜率初始直线的截距当所有的数据点的x值都远离0时,用斜率和截距来表示拟合直线意义不大,以斜率和中心值来表示通常更有用。

4/14/202322试验优化技术以斜率和中心值来表示的初始直线是式中,斜率b0的计算和前面一样,中心值(又称水平)a0*用下式计算:4/14/202323试验优化技术用残差拟合得到的斜率和水平对初始直线的斜率和水平进行调整,得到调整后的斜率和水平

然后用新的直线再计算残差,并进行残差拟合,并用拟合结果对直线进行调整,直到斜率的调整值(即残差方程的斜率)不超过初始斜率绝对值的1%或0.01%,这种迭代过程终止。4/14/202325试验优化技术【例2】某学校儿童的年龄与身高的数据如下表,试用三组耐抗线法拟合儿童身高y与年龄x间的关系。编号年龄x/月身高y/cm残差ei编号年龄x/月身高y/cm残差ei1109137.60.7210129148.31.552113147.88.9511130147.50.263115138.8-3.0412133148.80.084116140.70.3713134

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论