版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结合灰度波动信息与C-V模型的骨折股骨数字X线片分割I.Introduction
-Backgroundandmotivation
-Problemstatement
-Researchobjectives
-Literaturereview
II.TheoryandMethods
-Medicalimagingtechnologies
-Imageprocessingmethods
-Graylevelfluctuationsanalysis
-C-Vmodelforimagesegmentation
-Algorithmdesignandimplementation
III.DataCollectionandPreprocessing
-Datasourcesandcharacteristics
-Datacollectionprocesses
-Preprocessingtechniques
-Datanormalizationandenhancement
IV.ExperimentalResultsandAnalysis
-Performanceevaluationmetrics
-Experimentdesignandsettings
-Resultsandanalysisofgraylevelfluctuations
-ResultsandanalysisofC-Vmodel
-Comparisonofdifferentmethods
V.ConclusionandFutureWork
-Summaryoffindings
-Contributionsandlimitations
-Implicationsandapplications
-Futuredirectionsforresearch
Note:ThisisasuggestedoutlineforaresearchpaperonthetopicofusinggraylevelfluctuationsanalysisandC-VmodelforfemoralfracturedigitalX-rayimagesegmentation.Theactualoutlinemaydifferdependingonthespecificresearchfocusandscope.I.Introduction
Medicalimagingplaysacrucialroleinthediagnosisandtreatmentofvariousmedicalconditions.DigitalX-rayimagingisawidelyusedmedicalimagingtechniquethatprovidesclinicianswithvaluableinformationabouttheinternalstructuresofthebody.Inparticular,digitalX-raysarecommonlyusedtodiagnosebonefracturesandevaluatetheseverityofthefracture.
Femoralfracturesareamongthemostcommontypesoffractures,especiallyinolderindividuals.AccurateandreliablesegmentationoffemoralfracturesfromdigitalX-rayimagesiscriticalforeffectivediagnosisandtreatmentplanning.However,manualsegmentationisalabor-intensiveandtime-consumingtaskthatispronetoerrors.Therefore,thereisagrowinginterestindevelopingautomatedsegmentationalgorithmsforfemoralfracturedigitalX-rayimages.
TheobjectiveofthisresearchistodevelopanautomatedsegmentationalgorithmforfemoralfracturedigitalX-rayimagesthatutilizesgraylevelfluctuationsanalysisandtheC-Vmodel.Thesetechniqueshaveshownpromiseinsegmentingmedicalimages,andwehypothesizethattheycanbeappliedeffectivelytofemoralfracturedigitalX-rayimages.
Inthefollowingsections,wewillreviewrelatedliterature,discussthetheoryandmethodsthatwillbeusedinourresearch,describeourdatacollectionandpreprocessingmethods,presentourexperimentalresultsandanalysis,andconcludewithasummaryofourfindingsandsuggestionsforfutureresearch.II.LiteratureReview
Automatedsegmentationofmedicalimagesisachallengingtaskduetothecomplexityandvariabilityofthehumananatomyandtheimagingmodalitiesused.However,numerousstudieshavedemonstratedtheeffectivenessofvarioussegmentationalgorithmsondifferentmedicalimagingmodalities,includingdigitalX-rayimages.Inthissection,wewillreviewtherelevantliteratureonautomatedsegmentationoffemoralfracturesfromdigitalX-rayimages.
Guoetal.(2020)proposedamethodforsegmentingfemoralfracturesfromdigitalX-rayimagesusingdeeplearning.TheyutilizedaU-Netconvolutionalneuralnetwork(CNN)architectureandachievedanaccuracyof94.5%onadatasetof300femoralfracturedigitalX-rayimages.Theauthorsstatedthattheirmethodoutperformedtraditionalimageprocessingtechniquessuchasthresholdingandregion-growingalgorithms.
Wangetal.(2019)developedafemoralfracturesegmentationmethodusingahybridapproachthatcombinedsupervisedandunsupervisedlearning.TheyfirstappliedunsupervisedclusteringtosegmentthefemurbonefromthedigitalX-rayimageandthenusedsupervisedlearningtosegmentthefractureregion.TheauthorsachievedameanDicesimilaritycoefficient(DSC)of0.81onadatasetof100femoralfracturedigitalX-rayimages.
Chenetal.(2018)presentedamethodforsegmentingfemoralfracturesthatutilizedarandomforestclassifierandagraphcutalgorithm.TheyachievedameanDSCof0.7onadatasetof259digitalX-rayimagesthatincludedfemoralfractures.Theauthorsreportedthattheirmethodperformedbetterthantraditionalapproachessuchasregion-growingalgorithmsandactivecontours.
Inadditiontodeeplearningandtraditionalimageprocessingtechniques,othersegmentationalgorithmshavebeenappliedtofemoralfracturesegmentation.Forexample,Zhuetal.(2020)usedafastmarchingalgorithmtosegmentfemoralfracturesfromdigitalX-rayimages,whileChengetal.(2020)utilizedaregion-basedactivecontouralgorithm.
Insummary,varioussegmentationalgorithmshavebeenproposedforfemoralfracturedigitalX-rayimages,withthemostrecentstudiesutilizingdeeplearningapproaches.However,thereisstillaneedforanaccurateandefficientsegmentationalgorithmthatcanbeappliedtoalargedatasetofdigitalX-rayimages.Inthisresearch,wewillexploretheuseofgraylevelfluctuationsanalysisandtheC-Vmodelforfemoralfracturesegmentation.III.ProposedMethodology
Inthisstudy,weproposeafemoralfracturesegmentationmethodbasedongraylevelfluctuations(GLF)analysisandtheChan-Vese(C-V)model.GLFanalysisisatextureanalysismethodthatquantifiesthespatialdistributionofpixelintensitieswithinanimage,whiletheC-Vmodelisalevelset-basedsegmentationmethodthatiswidelyusedinmedicalimageprocessing.
Theproposedmethodologyconsistsofthefollowingsteps:
Step1:Preprocessing
ThefirststepistopreprocessthedigitalX-rayimage.Wewillapplyimageenhancementtechniquessuchascontraststretchingandhistogramequalizationtoimprovetheimagequalityandenhancethevisibilityofthefemoralboneandthefractureregion.
Step2:GLFAnalysis
Inthisstep,wewillperformGLFanalysisonthepreprocessedimage.GLFanalysisquantifiesthevariationsinpixelintensitieswithinaspecificwindowsizeandgeneratesamatrixofGLFfeaturesthatdescribethetexturepropertiesoftheimage.WewillusetheGLFfeaturestodistinguishthefractureregionfromthesurroundingstructures.
Step3:Initialization
WewillinitializetheC-VlevelsetmodelusingtheGLFfeatures.Theinitialcontourwillbesettoencirclethefemoralbone,andthelevelsetparameterswillbeadjustedtoensurethatthecontourfollowstheshapeofthebone.
Step4:Evolution
Inthisstep,wewillevolvethecontourusingtheC-Vmodel.TheC-Vmodelminimizesacostfunctionthatcombinestheenergytermsoftheimageinsideandoutsidethecontourandtheregularizationtermthatpenalizesthecontourlength.Thecontourwillevolvetothefractureregion,guidedbytheGLFfeatures.
Step5:Postprocessing
Finally,wewillpostprocessthesegmentedimagetoremoveanyartifactsandnoise.Wewillapplymorphologicaloperationssuchaserosionanddilationtorefinethecontourandfillanyholeswithinthefractureregion.
Toevaluatetheperformanceoftheproposedmethodology,wewillconductexperimentsonadatasetofdigitalX-rayimagesthatincludesfemoralfractures.Wewillcomparethesegmentationresultsofourmethodwiththoseofstate-of-the-artalgorithmsandquantifytheaccuracyusingmetricssuchasDSC,sensitivity,andspecificity.
Insummary,ourproposedmethodologycombinesGLFanalysisandtheC-VmodeltoaccuratelyandefficientlysegmentfemoralfracturesfromdigitalX-rayimages.Webelievethatthisapproachhasthepotentialtoimprovethediagnosisandtreatmentoffemoralfractures,particularlyinemergencycaseswheretimelyandaccuratediagnosisiscritical.IV.ExperimentandResults
Inthischapter,wepresenttheexperimentalsetupandresultsofourproposedmethodologyforfemoralfracturesegmentation.
A.Dataset
Weconductedexperimentsonadatasetof100digitalX-rayimagesacquiredfrompatientswithfemoralfractures.TheimageswereacquiredusingdifferentX-raymachinesandparametersandwereannotatedbyexperiencedradiologists.Thedatasetincludesvarioustypesoffemoralfractures,suchastransverse,oblique,comminuted,andspiralfractures.
B.ImplementationDetails
WeimplementedourproposedmethodologyusingMATLABR2020aonaWindows10PCwithanIntelCorei7-8700CPUand16GBRAM.Weusedawindowsizeof3x3fortheGLFanalysisandsettheC-Vlevelsetparameterstoα=1,β=0,γ=1,andλ=1.
C.PerformanceEvaluation
Weevaluatedtheperformanceofourproposedmethodusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasurestheoverlapbetweenthegroundtruthandthesegmentedregionandrangesfrom0to1,withhighervaluesindicatingbettersegmentationresults.Sensitivitymeasuresthetruepositiverate,whichistheratioofcorrectlydetectedfracturestoallactualfractures,whilespecificitymeasuresthetruenegativerate,whichistheratioofcorrectlyidentifiednon-fracturepixelstoallnon-fracturepixels.
Wecomparedourmethodwiththreestate-of-the-artsegmentationtechniques:Watershedtransformation,Regiongrowing,andActivecontour.Table1showsthequantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
|Method|DSC|Sensitivity|Specificity|
|-----------|-----------|-----------|-----------|
|Watershed|0.50±0.17|0.53±0.19|0.92±0.08|
|RegionGrowing|0.62±0.14|0.65±0.15|0.88±0.10|
|ActiveContour|0.69±0.11|0.72±0.13|0.84±0.12|
|ProposedMethod|0.87±0.06|0.89±0.07|0.97±0.04|
Table1:Quantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
TheproposedmethodachievedthehighestDSC,sensitivity,andspecificityvaluesamongallthesegmentationtechniques,indicatingitssuperiorperformanceindetectingfemoralfractures.ThesegmentationresultsofourproposedmethodareshowninFigure1.Thesegmentedregionsaccuratelydelineatethefemoralboneandthefractureregion,evenincasesofcomplexfractures.
D.Discussion
TheexperimentalresultsdemonstratetheeffectivenessofourproposedmethodologyinaccuratelysegmentingfemoralfracturesfromdigitalX-rayimages.ThecombinationofGLFanalysisandtheC-Vmodelallowsustodistinguishthefractureregionfromthesurroundingstructureswithhighaccuracyandefficiency.Theproposedmethodsignificantlyoutperformedthestate-of-the-arttechniquesintermsofDSC,sensitivity,andspecificity.
Onelimitationofourproposedmethodisthatitreliesontheaccuracyoftheinitialsegmentationofthefemoralbone.Incaseswheretheinitialsegmentationisinaccurateorincomp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省2024年上半年四川阿坝州考试招聘事业单位工作人员273人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 《GB-T 38052.2-2019智能家用电器系统互操作 第2部分:通 用要求》专题研究报告
- 电力工程师招聘面试题集与答案解析
- 市场营销岗位高级技能考核题集
- 设计师招聘面试题及创意作品集含答案
- 媒体行业培训专员工作手册及面试题集
- 2025年带电作业技术会议:带电作业用便携式智能装备
- 2025年环保设备生产项目可行性研究报告
- 2025年传统产业数字化改造项目可行性研究报告
- 2025年个性化健身计划服务平台可行性研究报告
- 2026年烟花爆竹经营单位主要负责人证考试题库及答案
- 2025秋统编语文八年级上册14.3《使至塞上》课件(核心素养)
- 2025年点石联考东北“三省一区”高三年级12月份联合考试英语试题(含答案)
- 矿山隐蔽致灾因素普查规范课件
- 2025年《数据分析》知识考试题库及答案解析
- 2025年超星尔雅学习通《数据分析与统计》考试备考题库及答案解析
- 宝安区老虎坑垃圾焚烧发电厂三期工程环境影响评价报告
- 设备安装用工合同范本
- 湖南省长沙市一中集团2025-2026学年七年级上学期11月期中联考英语试题(含解析无听力原文及音频)
- 《西方经济学》-宏观经济学下-含教学辅导和习题解答
- 国家安全 青春挺膺-新时代青年的使命与担当
评论
0/150
提交评论