版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结合灰度波动信息与C-V模型的骨折股骨数字X线片分割I.Introduction
-Backgroundandmotivation
-Problemstatement
-Researchobjectives
-Literaturereview
II.TheoryandMethods
-Medicalimagingtechnologies
-Imageprocessingmethods
-Graylevelfluctuationsanalysis
-C-Vmodelforimagesegmentation
-Algorithmdesignandimplementation
III.DataCollectionandPreprocessing
-Datasourcesandcharacteristics
-Datacollectionprocesses
-Preprocessingtechniques
-Datanormalizationandenhancement
IV.ExperimentalResultsandAnalysis
-Performanceevaluationmetrics
-Experimentdesignandsettings
-Resultsandanalysisofgraylevelfluctuations
-ResultsandanalysisofC-Vmodel
-Comparisonofdifferentmethods
V.ConclusionandFutureWork
-Summaryoffindings
-Contributionsandlimitations
-Implicationsandapplications
-Futuredirectionsforresearch
Note:ThisisasuggestedoutlineforaresearchpaperonthetopicofusinggraylevelfluctuationsanalysisandC-VmodelforfemoralfracturedigitalX-rayimagesegmentation.Theactualoutlinemaydifferdependingonthespecificresearchfocusandscope.I.Introduction
Medicalimagingplaysacrucialroleinthediagnosisandtreatmentofvariousmedicalconditions.DigitalX-rayimagingisawidelyusedmedicalimagingtechniquethatprovidesclinicianswithvaluableinformationabouttheinternalstructuresofthebody.Inparticular,digitalX-raysarecommonlyusedtodiagnosebonefracturesandevaluatetheseverityofthefracture.
Femoralfracturesareamongthemostcommontypesoffractures,especiallyinolderindividuals.AccurateandreliablesegmentationoffemoralfracturesfromdigitalX-rayimagesiscriticalforeffectivediagnosisandtreatmentplanning.However,manualsegmentationisalabor-intensiveandtime-consumingtaskthatispronetoerrors.Therefore,thereisagrowinginterestindevelopingautomatedsegmentationalgorithmsforfemoralfracturedigitalX-rayimages.
TheobjectiveofthisresearchistodevelopanautomatedsegmentationalgorithmforfemoralfracturedigitalX-rayimagesthatutilizesgraylevelfluctuationsanalysisandtheC-Vmodel.Thesetechniqueshaveshownpromiseinsegmentingmedicalimages,andwehypothesizethattheycanbeappliedeffectivelytofemoralfracturedigitalX-rayimages.
Inthefollowingsections,wewillreviewrelatedliterature,discussthetheoryandmethodsthatwillbeusedinourresearch,describeourdatacollectionandpreprocessingmethods,presentourexperimentalresultsandanalysis,andconcludewithasummaryofourfindingsandsuggestionsforfutureresearch.II.LiteratureReview
Automatedsegmentationofmedicalimagesisachallengingtaskduetothecomplexityandvariabilityofthehumananatomyandtheimagingmodalitiesused.However,numerousstudieshavedemonstratedtheeffectivenessofvarioussegmentationalgorithmsondifferentmedicalimagingmodalities,includingdigitalX-rayimages.Inthissection,wewillreviewtherelevantliteratureonautomatedsegmentationoffemoralfracturesfromdigitalX-rayimages.
Guoetal.(2020)proposedamethodforsegmentingfemoralfracturesfromdigitalX-rayimagesusingdeeplearning.TheyutilizedaU-Netconvolutionalneuralnetwork(CNN)architectureandachievedanaccuracyof94.5%onadatasetof300femoralfracturedigitalX-rayimages.Theauthorsstatedthattheirmethodoutperformedtraditionalimageprocessingtechniquessuchasthresholdingandregion-growingalgorithms.
Wangetal.(2019)developedafemoralfracturesegmentationmethodusingahybridapproachthatcombinedsupervisedandunsupervisedlearning.TheyfirstappliedunsupervisedclusteringtosegmentthefemurbonefromthedigitalX-rayimageandthenusedsupervisedlearningtosegmentthefractureregion.TheauthorsachievedameanDicesimilaritycoefficient(DSC)of0.81onadatasetof100femoralfracturedigitalX-rayimages.
Chenetal.(2018)presentedamethodforsegmentingfemoralfracturesthatutilizedarandomforestclassifierandagraphcutalgorithm.TheyachievedameanDSCof0.7onadatasetof259digitalX-rayimagesthatincludedfemoralfractures.Theauthorsreportedthattheirmethodperformedbetterthantraditionalapproachessuchasregion-growingalgorithmsandactivecontours.
Inadditiontodeeplearningandtraditionalimageprocessingtechniques,othersegmentationalgorithmshavebeenappliedtofemoralfracturesegmentation.Forexample,Zhuetal.(2020)usedafastmarchingalgorithmtosegmentfemoralfracturesfromdigitalX-rayimages,whileChengetal.(2020)utilizedaregion-basedactivecontouralgorithm.
Insummary,varioussegmentationalgorithmshavebeenproposedforfemoralfracturedigitalX-rayimages,withthemostrecentstudiesutilizingdeeplearningapproaches.However,thereisstillaneedforanaccurateandefficientsegmentationalgorithmthatcanbeappliedtoalargedatasetofdigitalX-rayimages.Inthisresearch,wewillexploretheuseofgraylevelfluctuationsanalysisandtheC-Vmodelforfemoralfracturesegmentation.III.ProposedMethodology
Inthisstudy,weproposeafemoralfracturesegmentationmethodbasedongraylevelfluctuations(GLF)analysisandtheChan-Vese(C-V)model.GLFanalysisisatextureanalysismethodthatquantifiesthespatialdistributionofpixelintensitieswithinanimage,whiletheC-Vmodelisalevelset-basedsegmentationmethodthatiswidelyusedinmedicalimageprocessing.
Theproposedmethodologyconsistsofthefollowingsteps:
Step1:Preprocessing
ThefirststepistopreprocessthedigitalX-rayimage.Wewillapplyimageenhancementtechniquessuchascontraststretchingandhistogramequalizationtoimprovetheimagequalityandenhancethevisibilityofthefemoralboneandthefractureregion.
Step2:GLFAnalysis
Inthisstep,wewillperformGLFanalysisonthepreprocessedimage.GLFanalysisquantifiesthevariationsinpixelintensitieswithinaspecificwindowsizeandgeneratesamatrixofGLFfeaturesthatdescribethetexturepropertiesoftheimage.WewillusetheGLFfeaturestodistinguishthefractureregionfromthesurroundingstructures.
Step3:Initialization
WewillinitializetheC-VlevelsetmodelusingtheGLFfeatures.Theinitialcontourwillbesettoencirclethefemoralbone,andthelevelsetparameterswillbeadjustedtoensurethatthecontourfollowstheshapeofthebone.
Step4:Evolution
Inthisstep,wewillevolvethecontourusingtheC-Vmodel.TheC-Vmodelminimizesacostfunctionthatcombinestheenergytermsoftheimageinsideandoutsidethecontourandtheregularizationtermthatpenalizesthecontourlength.Thecontourwillevolvetothefractureregion,guidedbytheGLFfeatures.
Step5:Postprocessing
Finally,wewillpostprocessthesegmentedimagetoremoveanyartifactsandnoise.Wewillapplymorphologicaloperationssuchaserosionanddilationtorefinethecontourandfillanyholeswithinthefractureregion.
Toevaluatetheperformanceoftheproposedmethodology,wewillconductexperimentsonadatasetofdigitalX-rayimagesthatincludesfemoralfractures.Wewillcomparethesegmentationresultsofourmethodwiththoseofstate-of-the-artalgorithmsandquantifytheaccuracyusingmetricssuchasDSC,sensitivity,andspecificity.
Insummary,ourproposedmethodologycombinesGLFanalysisandtheC-VmodeltoaccuratelyandefficientlysegmentfemoralfracturesfromdigitalX-rayimages.Webelievethatthisapproachhasthepotentialtoimprovethediagnosisandtreatmentoffemoralfractures,particularlyinemergencycaseswheretimelyandaccuratediagnosisiscritical.IV.ExperimentandResults
Inthischapter,wepresenttheexperimentalsetupandresultsofourproposedmethodologyforfemoralfracturesegmentation.
A.Dataset
Weconductedexperimentsonadatasetof100digitalX-rayimagesacquiredfrompatientswithfemoralfractures.TheimageswereacquiredusingdifferentX-raymachinesandparametersandwereannotatedbyexperiencedradiologists.Thedatasetincludesvarioustypesoffemoralfractures,suchastransverse,oblique,comminuted,andspiralfractures.
B.ImplementationDetails
WeimplementedourproposedmethodologyusingMATLABR2020aonaWindows10PCwithanIntelCorei7-8700CPUand16GBRAM.Weusedawindowsizeof3x3fortheGLFanalysisandsettheC-Vlevelsetparameterstoα=1,β=0,γ=1,andλ=1.
C.PerformanceEvaluation
Weevaluatedtheperformanceofourproposedmethodusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasurestheoverlapbetweenthegroundtruthandthesegmentedregionandrangesfrom0to1,withhighervaluesindicatingbettersegmentationresults.Sensitivitymeasuresthetruepositiverate,whichistheratioofcorrectlydetectedfracturestoallactualfractures,whilespecificitymeasuresthetruenegativerate,whichistheratioofcorrectlyidentifiednon-fracturepixelstoallnon-fracturepixels.
Wecomparedourmethodwiththreestate-of-the-artsegmentationtechniques:Watershedtransformation,Regiongrowing,andActivecontour.Table1showsthequantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
|Method|DSC|Sensitivity|Specificity|
|-----------|-----------|-----------|-----------|
|Watershed|0.50±0.17|0.53±0.19|0.92±0.08|
|RegionGrowing|0.62±0.14|0.65±0.15|0.88±0.10|
|ActiveContour|0.69±0.11|0.72±0.13|0.84±0.12|
|ProposedMethod|0.87±0.06|0.89±0.07|0.97±0.04|
Table1:Quantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
TheproposedmethodachievedthehighestDSC,sensitivity,andspecificityvaluesamongallthesegmentationtechniques,indicatingitssuperiorperformanceindetectingfemoralfractures.ThesegmentationresultsofourproposedmethodareshowninFigure1.Thesegmentedregionsaccuratelydelineatethefemoralboneandthefractureregion,evenincasesofcomplexfractures.
D.Discussion
TheexperimentalresultsdemonstratetheeffectivenessofourproposedmethodologyinaccuratelysegmentingfemoralfracturesfromdigitalX-rayimages.ThecombinationofGLFanalysisandtheC-Vmodelallowsustodistinguishthefractureregionfromthesurroundingstructureswithhighaccuracyandefficiency.Theproposedmethodsignificantlyoutperformedthestate-of-the-arttechniquesintermsofDSC,sensitivity,andspecificity.
Onelimitationofourproposedmethodisthatitreliesontheaccuracyoftheinitialsegmentationofthefemoralbone.Incaseswheretheinitialsegmentationisinaccurateorincomp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护理三基考核测试题库(附答案)
- 2025年广东兽医自考试题库及答案
- 2025年建筑法规复习试题及答案
- 沪教版数学五年级上册全册教案
- 2025年呼和浩特初中语文水平测试试题冲刺卷
- 小学英语第五册单元教学设计与教案
- 中小学生习作指导与写作能力提升
- 2025年游戏开发项目管理资源分配评估试卷
- 液压传动设备故障分析报告
- 个人工作反思与改进报告
- 2025年江苏省常州市中考英语真题
- 拒绝黄赌毒知识培训简报课件
- JJF 2251-2025波长色散X射线荧光光谱仪校准规范
- 机车修理工艺管理办法
- 猪场场防疫工作报告
- 鼻眼相关解剖结构
- 视频拍摄框架合同协议
- GB/T 43982.11-2025地下供水管网非开挖修复用塑料管道系统第11部分:软管穿插内衬法
- 2024年面向社会公开招聘城市社区工作者报名表
- 佛山市离婚协议书范本
- 产品安全保证书
评论
0/150
提交评论