版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页高三数学复习资料比方你写的C(4,1)就是指在4个里面选1个。没有挨次(1个原来就没有挨次,但2个以上也同样不用考虑挨次问题。)
你写的A(5,3)就是在5个里面选3个,但这3个不同的挨次算作不同的状况。
现举例说明A(5,3)和C(5,3)的区分。
如:12345这5个数,选其中的三个数,共有C(5,3)=10种选法。列举为(123)、(124)、(125)、(134)、(135)、(145)、(234)、(235)、(245)、(345)共10种。
同样这5个数,假如组成没有复数字的三位数,就是A(5,3)=60种。123、132、213、231、312、321也就是原来的一种组合如今变成了6种状况了。
公式更简洁。C(4,1)=4/1=4
C(5,3)=(5*4*3)/(3*2*1)
C(7,2)=(7*6)/(2*1)
也就是分子是下标依次递减相乘,乘的个数正好是上标的个数。
分母就是上标的阶乘。
A(5,3)=5*4*3
A(8,6)=8*7*6*5*4*3
A(4,2)=4*3
也就是只有组合时分子的状况,没有分母。
高三数学复习资料2
考纲要求
1.会从实际情境中抽象出二元一次不等式组.
2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
3.会从实际情境中抽象出一些简洁的二元线性规划问题,并能加以解决.
考纲研读
二元一次不等式表示相应直线Ax+By+C=0某一侧全部点组成的平面区域,可结合交集的概念去理解不等式组表示的平面区域.对于线性规划问题,能通过平移直线求目标函数的最值.对于实际问题,能转化成两个相关变量有关的不等式(组),再利用线性规划学问求解.
高三数学复习资料3
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的挨次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
留意:当直线的.斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
留意:各式的适用范围特别的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
留意:利用斜率推断直线的平行与垂直时,要留意斜率的存在与否.
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
其次,平面对量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础学问的考查,既全面又突出重点,扎实的数学基础是胜利解题的关键。针对数学高考强调对基础学问与基本技能的考查我们肯定要全面、系统地复习高中数学的基础学问,正确理解基本概念,正确把握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学学问在更高层次上的抽象和概括的考查,考查时与数学学问相结合。
对数学力量的考查,强调“以力量立意”,就是以数学学问为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重表达对学问的理解和应用,尤其是综合和敏捷的应用,全部数学考试最终落在解题上。考纲对数学思维力量、运算力量、空间想象力量以及实践力量和创新意识都提出了非常明确的考查要求,而解题训练是提高力量的必要途径,所以高考复习必需把解题训练落到实处。训练的内容必需依据考纲的要求细心选题,始终紧扣基础学问,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的熟悉,真正做到解一题,会一类。
在接近高考的数学复习中,考生们更应当从三个层面上整体把握,同步推动。
1.对于集合,肯定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注意借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.留意以下性质:
(3)德摩根定律:
4.你会用补集思想解决问题吗?(排解法、间接法)
的取值范围。
6.命题的四种形式及其互相关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7.对映射的概念了解吗?映射f:A→B,是否留意到A中元素的任意性和B中与之对应元素的性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8.函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤把握了吗?
(①反解x;②互换x、y;③注明定义域)
高三数学复习资料4
函数思想是指运用运动改变的观点,分析和讨论数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的互相转化。
数形结合思想
中学数学讨论的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是查找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特别与一般的思想
用这种思想解选择题有时特殊有效,这是由于一个命题在普遍意义上成立时,在其特别状况下也必定成立,依据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类商量思想
我们经常会遇到这样一种状况,解到某一步之后,不能再以统一的方法、统一的式子连续进行下去,这是由于被讨论的对象包含了多种状况,这就需要对各种状况加以分类,并逐类求解,然后综合归纳得解,这就是分类商量。引起分类商量的缘由许多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,改变等均可能引起分类商量。在分类商量解题时,要做到标准统一,不重不漏。
拥有一个整体的高考文科数学解题思路,会对文科生答数学题有很大的关心,可以更好的立于高考同学的第三轮复试,提高文科数学成果。
高三数学复习资料5
不等式的意义
考纲要求
1.理解肯定值的几何意义,并能利用含肯定值不等式的几何意义证明以下不等式
(1)|a+b|≤|a|+|b|;
(2)|a-b|≤|a-c||+|c-b|
(3)会利用肯定值的几何意义求解以下类型的不等式:
|ax+b|≤c,|ax+b|≥c;|x-c|+|x-b|≤a
2.了解柯西不等式的不同形式,理解他们的几何意义,并会证明
(1)柯西不等式向量形式:|α||β|≥|α·β|
(2)x1-x22+y1-y22+x2-x32+y2-y32≥x1-x32+y1-y32(通常称作平面三角不等式)
3.会用上述不等式证明一些简洁问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.
4.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、缩放法.
不等式的应用
考纲要求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能客服系统建设方案
- 2026年企业数字化转型方法库方案
- 轧钢工理论培训课件
- 跳远裁判知识培训课件
- 足疗职业素养培训课件
- 2026年外汇套利对冲工具合同协议
- 四年级上册数学应用题及答案
- 2026年社会责任与公益项目捐赠合同协议
- 2026年社会责任与公益广告
- 气象监测培训课件内容
- 医院调料杂粮副食品采购项目方案投标文件(技术方案)
- 静脉给药的安全管理
- 银行从业者观《榜样》心得体会
- 农村年底活动方案
- 2024届山东省威海市高三二模数学试题(解析版)
- 设备管理奖罚管理制度
- LINE6效果器HD300中文说明书
- 2025年航运行业安全生产费用提取和使用计划
- 纳米纤维凝胶隔热材料的应用研究进展
- 蟹苗买卖合同协议
- 2025年社区养老服务补贴政策及申领方法
评论
0/150
提交评论