初一数学知识点归纳1200字范文_第1页
初一数学知识点归纳1200字范文_第2页
初一数学知识点归纳1200字范文_第3页
初一数学知识点归纳1200字范文_第4页
初一数学知识点归纳1200字范文_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学知识点归纳1200字范文(10篇)初一数学学问点归纳1200字范文1

1.1正数与负数

在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(依据需要,有时在正数前面也加上“+”)。

1.2有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的肯定值(absolutevalue),记作|a|。

一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。两个负数,肯定值大的反而小。

1.3有理数的加减法

有理数加法法则:

1.同号两数相加,取一样的符号,并把肯定值相加。

2.肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把肯定值相除。0除以任何一个不等于0的数,都得0。mì

求n个一样因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,全部数字都是这个数的有效数字(significantdigit)。

初一数学学问点归纳1200字范文2

一、一元一次不等式的解法:

一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

1、去分母;

2、去括号;

3、移项;

4、合并同类项;

5、系数化为1

二、不等式的根本性质:

1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

3、不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。

三、不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

四、不等式的解集:

一个含有未知数的不等式的全部解,组成这个不等式的解集。

五、解不等式的依据不等式的根本性质:

性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

性质3:不等式两边乘以(或除以)同一个负数,不等号的方向转变,

常见考法

(1)考察一元一次不等式的解法;

(2)考察不等式的性质。

误区提示

忽视不等号变向问题。

初中数学重点学问点归纳

有理数乘法的运算律

1、乘法的交换律:ab=ba;

2、乘法的结合律:(ab)c=a(bc);

3、乘法的安排律:a(b+c)=ab+ac

单项式

只含有数字与字母的积的代数式叫做单项式。

留意:单项式是由系数、字母、字母的指数构成的。

多项式

1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项全部字母一样,并且一样字母的指数也分别一样的项叫做同类项。几个常数项也是同类项。

提高数学思维的方法

转化思维

转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过转变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最正确方法,使问题变得更简洁、清楚。

创新思维

创新思维是指以新奇独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思索问题,得出与众不同的解

要培育质疑的习惯

在家庭教育中,家长要常常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

在孩子放学回家后,让孩子回忆当天所学的学问:教师如何讲解的,同学是如何答复的?当孩子答复出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

有时,可以有意制造一些错误让孩子去发觉、评价、思索。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学学问点归纳1200字范文3

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向.

(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

3.肯定值

(1)概念:数轴上某个数与原点的距离叫做这个数的肯定值.

①互为相反数的两个数肯定值相等;

②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.

③有理数的肯定值都是非负数.

(2)假如用字母a表示有理数,则数a肯定值要由字母a本身的取值来确定:

①当a是正有理数时,a的肯定值是它本身a;

②当a是负有理数时,a的肯定值是它的相反数﹣a;

③当a是零时,a的肯定值是零.

即|a|={a(a>0)0(a=0)﹣a(a0,则a>b;

若a﹣b“,“≤“,“≥“表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>“,“y,那么yy;(对称性)

(2)假如x>y,y>z;那么x>z;(传递性)

(3)假如x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)假如x>y,z>0,那么xz>yz;假如x>y,zy,z>0,那么x÷z>y÷z;假如x>y,zy,m>n,那么x+m>y+n(充分不必要条件)

(7)假如x>y>0,m>n>0,那么xm>yn

(8)假如x>y>0,那么x的n次幂>y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般挨次:

(1)去分母(运用不等式性质2、3)

(2)去括号

(3)移项(运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1(运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10.一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1)求出每个不等式的解集;

(2)求出每个不等式的解集的公共局部;(一般利用数轴)

(3)用代数符号语言来表示公共局部。(也可以说成是下结论)

13.解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X>-1,X>2,不等式组的解集是X>2

(2)小于小于取小的(小小小);

例如:X2,x>3,不等式组的解集是X>3

(2)同小取小

例如,x1,不等式组的解集是1

(4)大大小小不用找

例如,x3,不等式组无解

15.应用不等式组解决实际问题的步骤

(1)审清题意

(2)设未知数,依据所设未知数列出不等式组

(3)解不等式组

(4)由不等式组的解确立实际问题的解

(5)作答

16.用不等式组解决实际问题:其公共解不肯定就为实际问题的解,所以需结合生活实际详细分析,最终确定结果。

初一数学学问点归纳1200字范文6

第一章

1.1正数与负数

在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(依据需要,有时在正数前面也加上“+”)。

1.2有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的肯定值(absolutevalue),记作|a|。

一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。两个负数,肯定值大的反而小。

1.3有理数的加减法

有理数加法法则:

1.同号两数相加,取一样的符号,并把肯定值相加。

2.肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把肯定值相除。0除以任何一个不等于0的数,都得0。mì

求n个一样因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base

number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,全部数字都是这个数的有效数字(significantdigit)。

其次章一元一次方程

2.1从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithone

unknown)。

解方程就是求出访方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起--一元一次方程的争论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章图形熟悉初步

3.1多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2直线、射线、线段

线段公理:两点的全部连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3角的度量

1度=60分1分=60秒1周角=360度1平角=180度

3.4角的比拟与运算

假如两个角的和等于90度(直角),就说这两个叫互为余角(compiementaryangle),即其中每一个角是另一个角的余角。

假如两个角的和等于180度(平角),就说这两个叫互为补角(supplementaryangle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

信任大家肯定认真阅读了由数学网为大家整理的初一数学下学期期末备考学问点归纳,盼望大家在考试中都能取得好成绩。

初一数学学问点归纳1200字范文7

一、目标与要求

同位角:∠1与∠5像这样具有一样位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:推断一件事情的语句叫命题。

12.真命题:正确的命题,即假如命题的题设成立,那么结论肯定成立。

13.假命题:条件和结果相冲突的命题是假命题。

14.平移:在平面内,将一个图形沿某个方向移动肯定的距离,图形的这种移动叫做平移平移变换,简称平移。

15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16.定理与性质

对顶角的性质:对顶角相等。

17.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的全部线段中,垂线段最短。

18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。

19.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

20.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

21.命题的扩展

三种命题

(1)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

(2)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的条件的否认和结论的否认,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

(3)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的结论的否认和条件的否认,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系

(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。

(2)四种命题的真假关系:

两个命题互为逆否命题,它们有一样的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系

命题之间的关系

(1)能够推断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。

(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。

(3)命题的分类:

A:原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增。

B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1.

C:否命题:将原命题的条件和结论全否认的新命题,但不转变条件和结论的挨次,

如:若x小于1,则f(x)=(x-1)2不单调递增。

D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否认的新命题,

如:若f(x)=(x-1)2不单调递增,则x小于1.

(4)命题的否认

命题的否认是只将命题的结论否认的新命题,这与否命题不同。

(5)4种命题及命题的否认的真假性关系

原命题和逆否命题等价,否命题和逆命题等价,命题的否认与原命题的真假性相反。

充分条件与必要条件

(1)“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。

(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。

充要条件

假如既有p=>q,又有q=>p,就记作pq,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。

初一数学学问点归纳1200字范文8

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特别的代数式,可采纳“整体代入”进展计算。

五、同底数幂的乘法

1、n个一样因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数一样的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开头底数不一样的幂的乘法,假如可以化成底数一样的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个一样的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍旧成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

十、零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,留意符号。

3、一样字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时留意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数一样。

4、混合运算中,留意运算挨次,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论